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Wiener-Hopf operators on L2
w(RR+)

By

Violeta Petkova

Abstract. Let L2
ω(R+) be a weighted space with weight ω. In this paper we show that for every

Wiener-Hopf operator T on L2
ω(R+) and for every a ∈ Iω , there exists a function νa ∈ L∞(R)

such that

(Tf )a = P+F−1(νa (̂f )a),

for all f ∈ C∞
c (R+). Here (g)a denotes the function x −→ g(x)eax for g ∈ L2

ω(R+), P+f =
χ

R+f and Iω = [ln R−
ω , ln R+

ω ], where R+
ω is the spectral radius of the shift S : f (x) −→ f (x−1)

on L2
ω(R+), while 1

R−
ω

is the spectral radius of the backward shift S−1 : f (x) −→ (P+f )(x + 1)

on L2
ω(R+). Moreover, there exists a constant Cω , depending on ω, such that ‖νa‖∞ � Cω‖T ‖

for every a ∈ Iω. If R−
ω < R+

ω , we prove that there exists a bounded holomorphic function ν on
◦
Aω:= {z ∈ C | Im z ∈◦

Iω} such that for a ∈◦
Iω , the function νa is the restriction of ν on the line

{z ∈ C | Im z = a}.

1. Introduction. Let ω be a weight on R+ := [0, +∞[, i.e. a positive measurable
function on R+ satisfying

0 < ess inf
x�0

ω(x + y)

ω(x)
� ess sup

x�0

ω(x + y)

ω(x)
< +∞, ∀y ∈ R+.(1.1)

The purpose of this paper is to study the representation of Wiener-Hopf operators on the

space L2
ω(R+) := {f measurable on R+ | +∞∫

0
|f (x)|2ω(x)2dx < +∞}. We will consider

L2
ω(R+) as a subspace of L2(R−) ⊕ L2

ω(R+) by setting f (t) = 0, for t < 0, when
f ∈ L2

ω(R+). The space L2
ω(R+) is a Hilbert space with respect to the sesquilinear form

〈f, g〉 := 〈f, g〉ω =
∫

R+
f (x)g(x)ω(x)2dx, ∀f ∈ L2

ω(R+), ∀g ∈ L2
ω(R+).
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We will denote by Sa,ω the translation operator from L2(R−) ⊕ L2
ω(R+) to L2(R−) ⊕

L2
ω(R+) defined by

(Sa,ωf )(x) = f (x − a),

for a ∈ R, x ∈ R. Set

ω̃(x) = ess sup
y�0

ω(x + y)

ω(y)
, for x � 0,

ω̃(x) = ess sup
y�0

ω(y)

ω(y − x)
, for x < 0,

and denote by P + the operator from L2(R−) ⊕ L2
ω(R+) to L2

ω(R+) defined by P +f =
χR+f . We have

‖Sa,ωP +‖ = ω̃(a), ∀a � 0

and

‖P +Sa,ωP +‖ = ω̃(a), ∀a < 0.

When there is no risk of confusion, we will write Sa instead of Sa,ω. Denote by B(X) the
set of bounded operators on the space X.

D e f i n i t i o n 1. An operator T ∈ B(L2
ω(R+)) is called a Wiener-Hopf operator if

P +S−aT Saf = Tf, for all a ∈ R+, f ∈ L2
ω(R+).

Denote by Wω the space of Wiener-Hopf operators on L2
ω(R+) and denote by C∞

c (R+)

the space of functions in C∞(R) with compact support in R+. The case ω = 1 is well
known (see [3]). Indeed, for every T ∈ W1, there exists a distribution µT such that

Tf = P +(µT ∗ f ), for f ∈ C∞
c (R+).(1.2)

Moreover, there exists a function h ∈ L∞(R), called the symbol of T , such that

Tf = P +F−1(hf̂ ), for f ∈ L2(R+).(1.3)

This paper is devoted to a generalisation of the results (1.2) and (1.3) for T ∈ Wω, where
ω is a function satisfying only (1.1). We are motivated by a recent result of Jean Esterle,
who proved in [2] that a Toeplitz operator on l2

σ (Z+) := {(un)n�0 | ∑
n�0

|un|2σ(n)2 < +∞}
is associated to a bounded function on the set U := {z ∈ C | 1

ρ(T )
� |z| � ρ(S)}, where

S and T denote respectively the shift and the backward shift on l2
σ (Z+) and ρ(A) denotes

the spectral radius of the operator A. Moreover, this function is holomorphic on
◦
U , if

◦
U �= ∅. On the other hand, in a recent paper (see [5]), the author showed that every
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multiplier (bounded operator commuting with translations) on a weighted space L2
δ (R) :=

{f measurable on R | +∞∫
−∞

|f (x)|2δ(x)2dx < +∞} has the representation T̂f = hf̂ , for

f ∈ C∞
c (R), on a band �δ ⊂ C determined by δ. Here h is a L∞ function on the

boundary of �δ , h is bounded and holomorphic on
◦

�δ , if
◦

�δ �= ∅, and the weight δ

satisfies a condition similar to (1.1). To our best knowledge there are no general results
concerning the representation of Wiener-Hopf operators on L2

ω(R+). Taking into account
the similarities between Wiener-Hopf operators and multipliers and the results of [5] and
[2], it is natural to conjecture that Wiener-Hopf operators have representation analogous
to (1.3). Nevertheless, there are some important differences and it is not yet known if every
Wiener-Hopf operator on a general weighted space L2

ω(R+) can be extended as a multiplier
on some weighted space L2

δ (R). Every Wiener-Hopf operator on L2(R+) is given by P +M ,
where M is a multiplier on L2(R) (see [3]) and then (1.2) and (1.3) follow obviously from
the results in [4]. In the general case, the argument of [3] is inapplicable and it seems
difficult to show that every Wiener-Hopf operator is induced by a multiplier. Despite of
this open question, inspired by methods developed in [5], we obtain the result below. Set

R+
ω = lim

n→+∞ ω̃(n)
1
n , R−

ω = lim
n→+∞ ω̃(−n)−

1
n ,

Iω := [ln R−
ω , ln R+

ω ], Aω := {z ∈ C | Im z ∈ Iω},

Cω = exp

2∫
1

2 ln ω̃(u)du.

Theorem 1. Let ω be a weight on R+ and let T ∈ Wω. Then

1) For all a ∈ Iω we have (Tf )a ∈ L2(R+), for f ∈ C∞
c (R+).

2) For all a ∈ Iω there exists a function νa ∈ L∞(R) such that

(Tf )a = P +F−1(νa(̂f )a), f or f ∈ C∞
c (R+).

3) Moreover, if
◦
Iω �= ∅ (R−

ω < R+
ω ), there exists a function ν ∈ H∞(

◦
Aω) such that for

all a ∈ ◦
Iω

ν(x + ia) = νa(x), almost everywhere on R+

and we have ‖ν‖∞ � Cω‖T ‖.
Notice that following the argument of [1], we can show as in [5], that the weight ω is

equivalent to a continuous weight ω0 defined by

ω0(x) = exp

 2∫
1

ln(ω(x + t))dt

 .
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Moreover, ω0 is such that ln ω0 is a Liptchitz function. This implies

lim
n→+∞ sup

0 � t � 1
n

ω̃0(t) = 1

and for every compact set K ⊂ R, we have

sup
t∈K

ω̃(t) < +∞.

Hence, if K ⊂ R+, then

0 < inf
x∈K

ω(x) � sup
x∈K

ω(x) < +∞.

It is clear that Aω = Aω0 . In the same way, as in [5], we observe that if T ∈ B(L2
ω(R+))

we have

‖T ‖ = sup
f ∈L2

ω(R+)
f �=0

‖Tf ‖ω0

‖f ‖ω0

� Cω sup
f ∈L2

ω(R+)
f �=0

‖Tf ‖ω

‖f ‖ω

.

Thus it is sufficient to prove Theorem 1 for a weight having the properties of ω0 and we
obtain the result for ω with a modification of the estimation of the norm of the symbol. First,
we generalise (1.2) in Section 2, by using an appropriate definition of µT and the methods
of [4]. In Section 3 we approximate a Wiener-Hopf operator expointing the arguments
of [5]. In Section 4, we prove Theorem 1.

2. Distribution associated to a Wiener-Hopf operator. In this section we prove that
every Wiener-Hopf operator is associated to a distribution. Denote by C∞

0 (R+) the space
of functions of C∞(R) with support in ]0, +∞[. Set H 1(R) = {f ∈ L2(R) |f ′ ∈ L2(R)},
the derivative of f ∈ L2(R) being taken in the sense of distributions.

Lemma 1. If T ∈ Wω and f ∈ C∞
0 (R+), then (Tf )′ = T (f ′).

P r o o f. Let f ∈ C∞
0 (R+) and let (hn)n�0 ⊂ R+ be a sequence converging to 0. We

have ∣∣∣∣ (S−hnf )(x) − f (x)

hn

− f ′(x)

∣∣∣∣ � 2‖f ′‖∞, ∀x ∈ R+

and by using the dominated convergence theorem, we obtain

lim
n→+∞

∥∥∥∥P +S−hnf − f

hn

− f ′
∥∥∥∥

ω

= 0.

Next we get

lim
n→+∞

∥∥∥∥TP+S−hnf − Tf

hn

− T (f ′)
∥∥∥∥

ω

= 0.
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Since T ∈ Wω, this implies for n � 1

TP+S−hnf = TS−hnf = P +S−hnTShnS−hnf = P +S−hnTf .

Then we have

lim
n→+∞

+∞∫
0

∣∣∣∣ (Tf )(x + hn) − (Tf )(x)

hn

− T (f ′)(x)

∣∣∣∣2

ω(x)2dx = 0.

It follows that P +S−hnTf −Tf

hn
converges to T (f ′) in the sense of distributions and

T (f ′) = (Tf )′. �

Denote by C∞
K (R) the space of functions of C∞

c (R) with support in the compact K .

Theorem 2. If T is a Wiener-Hopf operator, then there exists a distribution µT such that

Tf = P +(µT ∗ f ),

for f ∈ C∞
c (R+).

P r o o f. Set f̃ (x) = f (−x), for f ∈ C∞
c (R), x ∈ R. Let f ∈ C∞

c (R) and let zf be such
that supp f̃ ⊂] − zf , +∞[ and Szf̃ ∈ C∞

0 (R+) for z � zf . We have (TSzf̃ )′ = T (Szf̃ )′
and (TSzf̃ )′ ∈ L2

loc(R). It follows that TSzf̃ coincides with a continuous function on R+
(see [6, p. 186]). Moreover, for a > 0 and z � zf we have

(TSz+af̃ )(z + a) = (P +S−aTSa(Szf̃ ))(z) = (TSzf̃ )(z).

Thus we conclude that {(TSzf̃ )(z)}z∈R+ is a constant for z � zf and we set

〈µT , f 〉 = lim
z→+∞(TSzf̃ )(z).

Let K be a compact subset of R and let zK be such that zK � 1 and K ⊂] − ∞, zK [.
Choose g ∈ C∞

c (R) such that g is positive, supp g ⊂ [zK − 1, zK + 1] and g(zK) = 1. For
f ∈ C∞

K (R), we have gT (SzK
f̃ ) ∈ H 1(R) and it follows from Sobolev’s lemma (see [6])

that

|(TSzK
f̃ )(zK)| = |g(zK)(TSzK

f̃ )(zK)|

� C


 ∫

|y−zK | � 1

g(y)2|(TSzK
f̃ )(y)|2dy


1
2

+
 ∫

|y−zK | � 1

|(g(TSzK
f̃ ))′(y)|2dy


1
2
 ,
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where C > 0 is a constant. It implies that there exists a constant C(K), depending only
on K , such that

|(TSzK
f̃ )(zK)| � C(K)


 ∫

|y−zK | � 1

|(TSzK
f̃ )(y)|2 ω(y)2

ω(y)2
dy


1
2

+
 ∫

|y−zK | � 1

|(T (SzK
f̃ )′)(y)|2 ω(y)2

ω(y)2
dy


1
2
 .

Since sup
t∈[zK−1,zK+1]

1
ω(t)

< +∞ and sup
t∈[zK−1,zK+1]

ω(t) < +∞, it follows that for f ∈
C∞

K (R) we have

|(TSzK
f̃ )(zK)|

� C(K)‖T ‖


 ∫

|y−zK | � M

|(SzK
f̃ )(y)|2dy


1
2

+
 ∫

|y−zK | � M

|(SzK
f̃ )′(y)|2dy


1
2


� C(K)‖T ‖


 M∫

−M

|f̃ (x)|2dx


1
2

+
 M∫

−M

|(f̃ )′(x)|2dx


1
2


� C(K)‖T ‖(‖f̃ ‖∞ + ‖f̃ ′‖∞) = C(K)‖T ‖(‖f ‖∞ + ‖f ′‖∞),

where C(K) is a constant depending only on K . Since for all z � zK and for f ∈ C∞
K (R)

we have

(TSzf̃ )(z) = (T SzK
f̃ )(zK),

we deduce that µT is a distribution. On the other hand, for y � 0 and f ∈ C∞
c (R+) we

have for z > y:

(Tf )(y) = (S−yTf )(0) = (S−yS−zTSzf )(0)

= (S−z(S−yTSy)S−ySzf )(0) = (S−zTS−ySzf )(0)

= (TSzS−yf )(z).

Consequently,

lim
z→+∞(TSzS−yf )(z) = (Tf )(y).
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Next, we have, for y � 0 and for f ∈ C∞
c (R+),

lim
z→+∞(TSzS−yf )(z) = 〈µT , S̃−yf 〉 = 〈µT,x, f (y − x)〉

= (µT ∗ f )(y)

and we conclude that

(Tf )(y) = (µT ∗ f )(y), y � 0, f ∈ C∞
c (R+).

�

3. Approximation of Wiener-Hopf operators. In this section we will apply the argu-
ments of Section 3 in [5] with some modifications. For the convenience of the reader we
detail the proofs.

Denote by Tµ the Wiener-Hopf operator defined by the convolution with µ for f ∈
C∞

c (R+). If µ has compact support, then Tµ will be called a Wiener-Hopf operator with
compact support.

Theorem 3. Let ω be a weight on R+ and let T ∈ Wω. Then there exists a sequence
(Yn)n∈N of Wiener-Hopf operators with compact support such that

lim
n→+∞ ‖Ynf − Tf ‖ω = 0, f or f ∈ L2

ω(R+)

and

‖Yn‖ � ‖T ‖, ∀n ∈ N.

P r o o f. Set (Mtf )(x) = f (x)e−itx , for f ∈ L2
ω(R+), t ∈ R and x ∈ R+. By using

the dominated convergence theorem, we obtain that the group (Mt)t∈R is continuous with
respect to the strong operator topology. Let T ∈ Wω and set T (t) = M−t ◦T ◦Mt, ∀t ∈ R.
For a > 0, x > 0 and f ∈ L2

ω(R+) we have

(S−aT (t)Saf )(x) = (T (t)Saf )(x + a)

= eit (x+a)(T (f (s − a)e−its ))(x + a)

= eitx(S−aT (f (s − a)e−it (s−a)))(x)

= eitx(S−aTSa(Mtf ))(x) = (T (t)f )(x).

This shows that T (t) ∈ Wω. Moreover, we have ‖T (t)‖ = ‖T ‖, for t ∈ R and T (0) = T .
The transformation T is continuous from R into Wω. For n ∈ N, η ∈ R, x ∈ R, set
gn(η) := (1 − | η

n
|)χ[−n,n](η) and γn(x) = 1−cos(nx)

πx2n
. We have γ̂n(η) = gn(η), ∀η ∈ R,

∀n ∈ N. Clearly, ‖γn‖L1 = 1 for all n and lim
n→+∞

∫
|x|�a

γn(x)dx = 0 for a > 0. Set

Yn := (T ∗ γn)(0). Then for f ∈ L2
ω(R+) we obtain

lim
n→+∞ ‖Ynf − Tf ‖ω = 0.
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Hence, for n ∈ N and f ∈ L2
ω(R+), we have

‖Ynf ‖2
ω = ‖(T ∗ γn)(0)f ‖2

ω =
+∞∫
0

∣∣∣∣∣∣
+∞∫

−∞
(T (y)f )(x)γn(−y)dy

∣∣∣∣∣∣
2

ω(x)2dx

�
+∞∫
0

 +∞∫
−∞

|(T (y)f )(x)|γn(−y)dy

2

ω(x)2dx.

It follows from Jensen’s inequality and Fubini’s theorem that we have

‖Ynf ‖2
ω �

+∞∫
−∞

+∞∫
0

|(T (y)f )(x)|2γn(−y)ω(x)2dxdy

�
+∞∫

−∞
‖T (y)‖2‖f ‖2

ω γn(y)dy �
+∞∫

−∞
‖T ‖2‖f ‖2

ω γn(y)dy

= ‖T ‖2‖f ‖2
ω, ∀n ∈ N, ∀f ∈ L2

ω(R+).

We conclude that ‖Yn‖ � ‖T ‖. Now consider the distribution associated to Yn. Let K

be a compact subset of R and let zK � 1 be such that K ⊂] −∞, zK [. By applying the
argument of the proof of Theorem 2 and Sobolev’s lemma, we have for f ∈ C∞

K (R)

|(TSzK
(f̃ gn))(zK)|

� C(K)‖T ‖


 ∫

|y−zK |� M

|SzK
(f̃ gn)(y)|2dy


1
2

+
 ∫

|y−zK |� M

|SzK
(f̃ gn)

′(y)|2dy


1
2


� C(K)‖T ‖


 M∫

−M

|(f̃ gn)(x)|2dx


1
2

+
 M∫

−M

|(f̃ gn)
′(x)|2dx


1
2


� C̃(K)(‖f ‖∞ + ‖f ′‖∞),

where C(K) and C̃(K) depend only on K . Therefore

|(TSz(f̃ gn))(z)| � C̃(K)(‖f ‖∞ + ‖f ′‖∞), ∀z � zK, ∀f ∈ C∞
K (R)

and we conclude that µT gn, defined by

〈µT gn, f 〉 = lim
z→+∞(TSz(f̃ gn))(z),
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is a distribution. On the other hand, we have

(Ynf )(y) =
∫
R

(T (−s)f )(y)γn(s)ds

=
∫
R

e−isy(T (M−sf ))(y)γn(s)ds

=
∫
R

〈µT,x, f (y − x)e−isx〉γn(s)ds

=
〈
µT,x, f (y − x)

∫
R

γn(s)e
−isxds

〉
= 〈µT,x, f (y − x)gn(x)〉
= (µT gn ∗ f )(y), ∀y � 0, ∀f ∈ C∞

c (R+).

Finally, we obtain

Ynf = P +(µT gn ∗ f ), ∀f ∈ C∞
c (R+), ∀n ∈ N.

Since supp µT gn ⊂ [−n, n], this completes the proof. �

Theorem 4. Let ω be a weight on R+. If T ∈ Wω, then there exists a sequence (φn)n∈N ⊂
C∞

c (R) such that

lim
n→+∞ ‖Tφnf − Tf ‖ω = 0, ∀f ∈ L2

ω(R+)

and

‖Tφn‖ �

 sup
0�t� 1

n

ω̃(t)

 ‖T ‖, ∀n ∈ N.

P r o o f. Let T ∈ Wω be associated to a distribution µT with compact support. Let
(θn)n∈N ⊂ C∞

c (R) be a sequence such that supp θn ⊂ [0, 1
n

], θn � 0, lim
n→+∞

∫
x�a

θn(x)

dx = 0 for a > 0 and ‖θn‖L1 = 1, for n ∈ N. For f ∈ L2
ω(R+) we have

lim
n→+∞ ‖θn ∗ f − f ‖ω = 0. Set Tnf = T (θn ∗ f ), ∀f ∈ L2

ω(R+). We conclude that

(Tn)n∈N converges to T with respect to the strong operator topology and Tn = Tφn , where
φn = µT ∗ θn ∈ C∞

c (R). For f ∈ L2
ω(R+), we have

‖Tnf ‖2
ω = ‖P +(µT ∗ θn ∗ f )‖2

ω = ‖P +(θn ∗ µT ∗ f )‖2
ω

=
+∞∫
0

∣∣∣∣∣∣
∫
R

θn(y)(Sy(µT ∗ f ))(x)dy

∣∣∣∣∣∣
2

ω(x)2dx

�
+∞∫
0

∫
R

θn(y)|(Sy(µT ∗ f ))(x)|2ω(x)2dydx.
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By Fubini’s theorem we obtain

‖Tnf ‖2
ω �

1
n∫

0

θn(y)

 +∞∫
0

|(µT ∗ Syf )(x)|2ω(x)2dx

 dy

�

1
n∫

0

θn(y)‖T (Syf )‖2
ω dy �

1
n∫

0

θn(y)‖T ‖2ω̃(y)2‖f ‖2
ωdy

� ‖T ‖2

 sup
0 � y � 1

n

ω̃(y)2

 ‖f ‖2
ω.

We deduce that ‖Tn‖ � ( sup
0 � y � 1

n

ω̃(y))‖T ‖ and Theorem 4 follows immediately from an

application of Theorem 3. �

4. Representation of Wiener-Hopf operators. Set ω∗(x) = ω(−x)−1, for all x ∈ R−.
We introduce the space

L2
ω∗(R−) :=

f measurable on R− |
∫

R−
|f (x)|2ω∗(x)2dx < +∞

 .

We will consider L2
ω∗(R−) as a subspace of L2

ω∗(R−) ⊕ L2(R+) by setting f (t) = 0, for
t > 0, when f ∈ L2

ω∗(R−). Set

[f, g] := [f, g]ω =
∫

R+
f (x)g(−x)dx, ∀f ∈ L2

ω(R+), ∀g ∈ L2
ω∗(R−).

We will denote by Sa,ω∗ the translation operator from L2
ω∗(R−) ⊕ L2(R+) to L2

ω∗(R−)⊕
L2(R+) defined by

(Sa,ω∗f )(x) = f (x − a),

for a ∈ R, x ∈ R. Denote by P − : L2
ω∗(R−)⊕L2(R+) −→ L2

ω∗(R−) the operator defined
by P −f = χR−f.

Lemma 2. Let ω be a continuous weight on R+. Then

1) For α ∈ B−
ω := {z ∈ C | ln R−

ω � Imz and lim
n→+∞

n∑
k=0

e−2kIm zω(k)2 = +∞} there

exists a sequence (uα,k)k∈N ⊂ L2
ω(R+) such that
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i) ‖uα,k‖ω = 1, ∀k ∈ N.(4.1)

ii) lim
k→+∞ ‖P +St,ωuα,k − e−itαuα,k‖ω = 0, ∀t ∈ R.(4.2)

2) For α ∈ B+
ω := {z ∈ C | Im z � ln R+

ω and lim
n→+∞

n∑
k=0

e2kImz

ω(k)2 = +∞} there exists

a sequence (vα,k)k∈N ⊂ L2
ω∗(R−) such that

i) ‖ vα,k ‖ω∗ = 1, ∀k ∈ N.(4.3)

ii) lim
k→+∞ ‖P − St,ω∗ vα,k − e−itαvα,k‖ω∗ = 0, ∀t ∈ R.(4.4)

P r o o f. The proof uses the same arguments as those in Section 3 in [5] (see Lemmas 4,

5, 6 ,7). Setting fε = χ[0,ε] and gn =
n∑

p=0
ei(p+1)αSpfε , we have just to repeat with minor

modifications the argument in [5] and for this reason we omit the details. �

For T ∈ B(L2
ω(R+)) denote by T ∗ the operator in B(L2

ω∗(R−)) such that

[Tf, g] = [f, T ∗g],

for all f ∈ L2
ω(R+), g ∈ L2

ω∗(R−).

Lemma 3. Let ω be a continuous weight on R+. Then

1) For α ∈ B−
ω , there exists a sequence (uα,k)k∈N ⊂ L2

ω(R+) such that

‖uα,k‖ω = 1, ∀k ∈ N,

lim
k→+∞ ‖ Tφ uα,k − φ̂(α)uα,k ‖ω = 0, ∀φ ∈ C∞

c (R).(4.5)

2) For α ∈ B+
ω , there exists a sequence (vα,k)k∈N ⊂ L2

ω∗(R−) such that

‖vα,k‖ω∗ = 1, ∀k ∈ N,

lim
k→+∞ ‖T ∗

φ vα,k − φ̂(α)vα,k‖ω∗ = 0, ∀φ ∈ C∞
c (R).(4.6)

P r o o f. Let α ∈ B−
ω and let φ ∈ C∞

[−a,a](R). Choose a sequence (uα,k)k∈N ⊂ L2
ω(R+)

with the properties (4.1) and (4.2). We obtain

‖ Tφ uα,k − φ̂(α)uα,k ‖2
ω

=
+∞∫
0

∣∣∣∣∣∣
a∫

−a

φ(y)(Sy uα,k(x) − e−iyαuα,k(x))dy

∣∣∣∣∣∣
2

ω(x)2dx

�
+∞∫
0

‖φ‖2∞

 a∫
−a

∣∣∣Sy uα,k(x) − e−iyαuα,k(x)

∣∣∣ dy

2

ω(x)2dx, ∀k ∈ N.
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It follows from Jensen’s inequality and Fubini’s theorem that we have

‖Tφ uα,k − φ̂(α)uα,k‖2
ω

� ‖φ‖2∞

a∫
−a

 +∞∫
0

∣∣∣Sy uα,k(x) − e−iyαuα,k(x)

∣∣∣2
ω(x)2dx

 dy

� ‖φ‖2∞

a∫
−a

‖P +Sy uα,k − e−iyαuα,k‖2
ω dy, ∀k ∈ N.

Since for k ∈ N and y ∈ [−a, a],

‖P +Sy uα,k − e−iyαuα,k‖ω � sup
s∈[−a,a]

(ω̃(s) + |e−isα|) < +∞.

Applying the dominated convergence theorem, we get

lim
k→+∞ ‖Tφ uα,k − φ̂(α)uα,k‖ω = 0.

In the same way, by using Lemma 2, we obtain the second assertion. �

Lemma 4. Let ω be a continuous weight on R+ and let φ ∈ C∞
c (R). Then we have

|φ̂(α)| � ‖ Tφ ‖, ∀α ∈ Aω.(4.7)

P r o o f. Note that from Cauchy-Schwartz’s inequality we obtain that for z ∈ C at least

one of the series
n∑

k=0
e−2kIm zω(k)2 and

n∑
k=0

e2kIm z

ω(k)2 diverges and we have Aω ⊂ B−
ω

⋃
B+

ω .

Let φ ∈ C∞
c (R). Assume that α ∈ Aω

⋂
B−

ω . Let (uα,k)k∈N ⊂ L2
ω(R+) be a sequence

satisfying (4.5). Since ‖uα,k‖ω = 1, for all k ∈ N, we have

φ̂(α) = 〈φ̂(α)uα,k − Tφ uα,k , uα,k〉 + 〈Tφ uα,k , uα,k〉, ∀k ∈ N

and we obtain

|φ̂(α)| � |〈φ̂(α)uα,k − Tφ uα,k , uα,k〉| + ‖Tφ‖, ∀k ∈ N.

We have

lim
k→+∞ |〈φ̂(α)uα,k − Tφ uα,k , uα,k〉| � lim

k→+∞ ‖φ̂(α)uα,k − Tφ uα,k‖ω = 0

and we conclude that

|φ̂(α)| � ‖Tφ‖.
If α ∈ Aω

⋂
B+

ω , by using the same argument and the property (4.6), we have

|φ̂(α)| � ‖T ∗
φ ‖.
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Taking into account the equality ‖Tφ‖ = ‖T ∗
φ ‖, we obtain

|φ̂(α)| � ‖Tφ‖, ∀α ∈ Aω

and the proof is complete. �

Now we will prove our main result.

P r o o f o f T h e o r e m 1. Assume that ω is continuous and let T ∈ Wω. Let (φn)n∈N ⊂
C∞

c (R) be a sequence such that (Tφn)n∈N converges to T with respect to the strong operator
topology and such that ‖Tφn‖ � kn‖T ‖, where kn = sup

0 � y � 1
n

ω̃(y) (see Theorem 4). Fix

a ∈ Iω. We have

| ̂(φn)a(x)| = |φ̂n(x + ia)| � ‖Tφn‖ � kn‖T ‖,
for all x ∈ R. We can extract from ( ̂(φn)a)n∈N a subsequence which converges with respect
to the weak topology σ(L∞(R), L1(R)) to a function νa ∈ L∞(R). For simplicity this sub-
sequence will be denoted also by ( ̂(φn)a)n∈N . We have ‖νa‖∞ � lim

n→+∞ ( sup
0 � t � 1

n

ω̃(t))‖T ‖
and

lim
n→+∞

∫
R

( ̂(φn)a(x) − νa(x)
)

g(x) dx = 0, ∀g ∈ L1(R).

Notice that

lim
n→+∞

∫
R

( ̂(φn)a(x)(̂f )a(x) − νa(x)(̂f )a(x)
)

g(x) dx = 0,

∀g ∈ L2(R), ∀f ∈ C∞
c (R).

We conclude that, for f ∈ C∞
c (R), ( ̂(φn)a(̂f )a)n∈N converges with respect to the

weak topology of L2(R) to νa(̂f )a . Since we have (Tφnf )a = P +((φn)a ∗ (f )a)

= P +F−1 ( ̂(φn)a(̂f )a), the sequence ((Tφnf )a)n∈N converges with respect to the weak
topology of L2(R) to P +F−1(νa(̂f )a). Moreover, we have

+∞∫
0

|(Tφnf )a(x) − (Tf )a(x)||g(x)|dx

� Ca,g‖Tφnf − Tf ‖ω , ∀g ∈ C∞
c (R),

where Ca,g > 0 depends only on g and a. Then, we obtain that ((Tφnf )a)n∈N converges
in the sense of distributions to (Tf )a . Thus, we conclude that (Tf )a = P +F−1(νa(̂f )a)

and (Tf )a ∈ L2(R+).

Below, we assume that
◦
Iω �= ∅. Since (φ̂n)n∈N is a uniformly bounded sequence of

holomorphic functions on
◦
Aω, we can replace (φ̂n)n∈N by a subsequence which converges
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to a function ν ∈ H(
◦
Aω) uniformly on every compact set. Thus, for all a ∈ Iω, the sequence

(φ̂n(. + ia))n∈N converges to ν(. + ia) in the sense of distributions. On the other hand, the
sequence ( ̂(φn)a)n∈N converges to νa with respect to the topology σ(L1(R), L∞(R)), and
we deduce that

ν(x + ia) = νa(x), a.e. for a ∈ ◦
Iω .

It is clear that ‖ν‖∞ � lim
n→+∞ ( sup

0 � t � 1
n

ω̃(t))‖T ‖. If ω is such that lim
n→+∞ sup

0 � t � 1
n

ω̃(t) = 1,

we obtain ‖ν‖∞ � ‖T ‖. If we don’t assume that ω is continuous we have ‖ν‖∞ � Cω‖T ‖,
where Cω is the constant defined in the introduction. To obtain this we apply the equivalence
of ω to a special continuous weight ω0 (see Section 1 ). This completes the proof. �
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encouragements.
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