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Wiener-Hopf operators on Lﬁ,(R"‘)

By

VIOLETA PETKOVA

Abstract. Let Lg) (R*) be a weighted space with weight w. In this paper we show that for every
Wiener-Hopf operator 7 on Lé(]R*) and for every a € I, there exists a function v, € L*°(R)
such that

(THa =PrF  wa(Da),

forall f € C2°(RY). Here (g), denotes the function x —> g(x)e?* for g € LL(R™T), Pt f =
xgp+fandly, =[In R, In RZ)_]v where Ra")' is the spectral radius of the shift S : f(x) — f(x—1)

on L2 (R), while R% is the spectral radius of the backward shift S~! : f(x) — (Pt f)(x+1)
w

on Lé(R*). Moreover, there exists a constant Cg,, depending on w, such that [|vg|lco < Co || T ||
forevery a € I,.If R, < RL'U" , we prove that there exists a bounded holomorphic function v on

o o o
Aw:= {z € C|Im z €]} such that for a €], the function v, is the restriction of v on the line
{zeC|Imz =a}.

1. Introduction. Let w be a weight on R* := [0, +o0, i.e. a positive measurable
function on R™ satisfying
(1.1) 0 < ess inf o> +7) < ess supM < 400, Vy e RT.
x>0  w(x) x>0 w(x)

The purpose of this paper is to study the representation of Wiener-Hopf operators on the
+00
space L2 (R™) := {f measurableon R™ | /' | f(x)|?w(x)?dx < +00}. We will consider
0
L2(R") as a subspace of L2(R™) @ L2 (R") by setting f(t) = 0, for t < 0, when

f e L(ZU(RJ“). The space LLZU(RJF) is a Hilbert space with respect to the sesquilinear form

(f.8) = (f. )o = / FOE@0) r, Vf € LARY), Vg € LLR™).

RT
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We will denote by S, the translation operator from L*R7) & LZ)(R+) to L2(R7) &
L2 (R™) defined by

(Sa,wf)(x) = f(x —a),
fora e R, x € R. Set

wlx +y)

@(x) = ess sup , forx =0,
y20 (y)
@(x) = ess sup @) , forx <0,

y20 w(y —x)

and denote by P the operator from L>(R™) @ L2 (R™) to L2(R™) defined by P* f =
xr+f- We have

[1S0.0 Pl = @(a),Ya = 0
and
|PtS,.0PT | = d(a),Va < 0.

When there is no risk of confusion, we will write S, instead of S, ,. Denote by B(X) the
set of bounded operators on the space X.

Definition 1. Anoperator T € B (Li(R*)) is called a Wiener-Hopf operator if
PYS_ TS.f =Tf, foralla e RT, f e L2(R™).

Denote by W, the space of Wiener-Hopf operators on Li(Rﬂ and denote by C2°(R™)
the space of functions in C*°(R) with compact support in R*. The case w = 1 is well
known (see [3]). Indeed, for every T € W, there exists a distribution p7 such that

(1.2) Tf = PY(ur=* f), for f € CERM).
Moreover, there exists a function 2 € L% (R), called the symbol of T, such that
(1.3) Tf = PYF ' (hf), for f € L>R™).

This paper is devoted to a generalisation of the results (1.2) and (1.3) for T € W,,, where
w is a function satisfying only (1.1). We are motivated by a recent result of Jean Esterle,

who proved in [2] that a Toeplitz operator on l(z, Z") = {n)nzo! > |u,,|2cr (n)? < 400}
n=0

is associated to a bounded function on the set U := {z € C | ﬁ < |zl £ p(S)}, where

S and T denote respectively the shift and the backward shift on lg (Z") and p(A) denotes

the spectral radius of the operator A. Moreover, this function is holomorphic on (} , if

l} # (. On the other hand, in a recent paper (see [5]), the author showed that every
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multiplier (bounded operator commuting with translations) on a weighted space L%(R) =
400 — N

{f measurable on R | [ |f(x)|*8(x)?>dx < 400} has the representation Tf = h f, for
—00

f € CX(R), on a band Q5 C C determined by §. Here h is a L° function on the

boundary of 2s, & is bounded and holomorphic on Sgg, if S;g # (§, and the weight §
satisfies a condition similar to (1.1). To our best knowledge there are no general results
concerning the representation of Wiener-Hopf operators on Li(RJF). Taking into account
the similarities between Wiener-Hopf operators and multipliers and the results of [5] and
[2], it is natural to conjecture that Wiener-Hopf operators have representation analogous
to (1.3). Nevertheless, there are some important differences and it is not yet known if every
Wiener-Hopf operator on a general weighted space LZ) (R™) can be extended as a multiplier
on some weighted space L§ (R). Every Wiener-Hopf operator on L>(R*) is given by P M,
where M is a multiplier on L2(R) (see [3]) and then (1.2) and (1.3) follow obviously from
the results in [4]. In the general case, the argument of [3] is inapplicable and it seems
difficult to show that every Wiener-Hopf operator is induced by a multiplier. Despite of
this open question, inspired by methods developed in [5], we obtain the result below. Set

. ~ 1 _ . ~ _1
Ra'f = lim w@m)", R, = lim @&(-n) 7,
n—+00 n——+00

I,:=[InR,, InR], A, :={z€C|Imz e I,},

2

C, = exp/ZIn&J(u)du.
1

Theorem 1. Let w be a weight on R* and let T € W,,. Then

1) Foralla € I, we have (Tf), € L*(RT), for f € C?O(RJF).
2) Forall a € I, there exists a function v, € L°°(R) such that

(Tfa = PYFwa(Pa), for f € CRY).

3) Moreover, if;w;é @ (R, < R}), there exists a function v € H*®(A,) such that for
alla € 1,
v(x +ia) = vs(x), almost everywhere on Rt

and we have ||[v|so < ColIT|l.

Notice that following the argument of [1], we can show as in [5], that the weight w is
equivalent to a continuous weight wq defined by

2

wp(x) = exp /ln(a)(x + t))dt
1
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Moreover, wyg is such that In wq is a Liptchitz function. This implies

lim sup wo(t) =1
m»+m0§t§%

and for every compact set K C R, we have

sup @(t) < +00.
tekK

Hence, if K ¢ R, then

0 < inf w(x) £ sup w(x) < +oo.
xek xeK

It is clear that A, = A,,,. In the same way, as in [5], we observe thatif T € B(Lz)(RJF))
we have

T oo < I7fllo

= w

T| = .
S N O s S T
f#0 f#0

Thus it is sufficient to prove Theorem 1 for a weight having the properties of wy and we
obtain the result for w with a modification of the estimation of the norm of the symbol. First,
we generalise (1.2) in Section 2, by using an appropriate definition of pr and the methods
of [4]. In Section 3 we approximate a Wiener-Hopf operator expointing the arguments
of [5]. In Section 4, we prove Theorem 1.

2. Distribution associated to a Wiener-Hopf operator. In this section we prove that
every Wiener-Hopf operator is associated to a distribution. Denote by C§° (R™) the space
of functions of C*°(RR) with support in ]0, +-00[. Set H!(R) = {f € L>*(R) | f’ € L*(R)},
the derivative of f € L2(R) being taken in the sense of distributions.

Lemma 1. If T € W,, and f € C(RY), then (Tf) = T(f").

Proof. Let f € C8°(R+) and let (h,),>0 C R* be a sequence converging to 0. We
have

‘(S_hnf)ZX) —fx) )| S 20 F oo, Vx € RT

n

and by using the dominated convergence theorem, we obtain

PtS_p, f—
lim H PoSoml =1 el o,
n—+00 hy, o
Next we get
TPTS_y, f—T
lim H# —7(fH| =o.
n——+00 hy, ®
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Since T € W, this implies for n > 1
TP S_p, f =TS—n,f = PTS_p,TSh,S—n, f = PTS_y,Tf.

Then we have

2
—T(f)(x)| wx)’dx =0.

lim
n——+00

70' (T + hy) — (T
i
0

It follows that converges to T(f’) in the sense of distributions and

T(fH=@f)y. O

Denote by Cz°(R) the space of functions of C2°(IR) with support in the compact K.

PTS_y, Tf-Tf
h

Theorem 2. If T is a Wiener-Hopf operator, then there exists a distribution ut such that
Tf = P*(ur* f),
for f € CX(RY).
Proof. Set f(x) = f(=x),for f € C(R),x e R. Let f € C°(R) and let z r be such
that supp f C]—zy, +oo[and S, f € CP(R™) for z > z;. We have (TS, f) = T(S.f)’

and (7S, f) € leoc(R)~ It follows that 7S f coincides with a continuous function on R
(see [6, p. 186]). Moreover, fora > 0 and z = z we have

(TSe1a f)(z +a) = (PTS_uTSu(S; /))(2) = (TS, /) (2).

Thus we conclude that {(TS, 13 (2)};er+ is a constant for z = z; and we set
{ur, f) = _lim (TS, /)(2).
7—>+00

Let K be a compact subset of R and let zx be such that zx = 1 and K C] — o0, zx[.
Choose g € C°(R) such that g is positive, supp g C [zx — 1, zx + 1]and g(zx) = 1. For
f € CFR), we have gT (S, f) € H'(R) and it follows from Sobolev’s lemma (see [6])
that

TSz )zl = |8(zx) (TS24 ) (zk)]

D=

A
a

/ (TS H(WIPdy

[y—zkl 1

1
2

+ / (g(TS., /Y () [2dy

[y—zkl =1
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where C > 0 is a constant. It implies that there exists a constant C(K), depending only
on K, such that

x F ,w(y)?
s Heol < i [ [ s o) sy
[y—zxl=1
) 2
x o(y)
w1 nersSsa
@(y)
ly—zxl=1
Since sup ﬁ < +o0 and sup w(t) < 400, it follows that for f €
telzx —1,zx+1] telzx —1l,zx+1]
CZ(R) we have
[(TS- /) (zk)]
%
scaonrif | [ isuhHiora
ly—zkl=M

N—

4 / 1(Sap 7Y )Py

ly—zkl=M
1

M M 2
S CK)IT ( / |f(x>|2dx) +( / |(f>/<x>|2dx)
-M -M

S CEONT I Moo + 1. loo) = CAONT N f lloo + 11floo)

where C(K) is a constant depending only on K. Since for all z 2 zk and for f € CF(R)
we have

(TS, f)(2) = (T Sz f)(zk),

we deduce that w7 is a distribution. On the other hand, for y > 0 and f € CSO(R+) we
have for z > y:

(T = (S—yT)(0) = (S—yS_.TS. )(0)
= (S_2(S—yTSy)S—yS. f)(0) = (S—.TS_,S: )(0)
= (IS:S_y f)(2).

Consequently,

im (TS:5-y f)(@) = (TH ().
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Next, we have, for y 2 0 and for f € C° (RT),

lim (75:S_y /)@ = (ur. 55 f) = {ure. £ =)
= (ur * ()

and we conclude that

(TH) = (ur* ), y 20, feCPRM.
O

3. Approximation of Wiener-Hopf operators. In this section we will apply the argu-
ments of Section 3 in [5] with some modifications. For the convenience of the reader we
detail the proofs.

Denote by T;, the Wiener-Hopf operator defined by the convolution with u for f €
C2°(R™). If p has compact support, then 7}, will be called a Wiener-Hopf operator with
compact support.

Theorem 3. Let @ be a weight on RY and let T € W,,. Then there exists a sequence
(Yn)nen of Wiener-Hopf operators with compact support such that

lim |Y,f —Tfllo=0, for f e Li(Rﬂ
n—-+00
and

IYall < IITl, Vn € N.

Proof. Set (M, f)(x) = f(x)e™"* for f € Li(RJr), t € Rand x € R*. By using
the dominated convergence theorem, we obtain that the group (M;);cr is continuous with
respect to the strong operator topology. Let T € W, andset 7 (t) = M_;oT o M;, Vt € R.
Fora > 0,x > 0and f € L2(R") we have

(S—aT (S f)(x) = (T(1)Sa f)(x +a)
=TT (f (s —a)e ")) (x +a)
=" (S_aT(f(s — @) 7))
= " (S_yTSa(My ))(x) = (T (t) f) (x).

This shows that 7 (t) € W,,. Moreover, we have |7 ()| = ||T||, fort e Rand 7 (0) =T.
The transformation 7 is continuous from R into W,,. Forn € N, n € R, x € R, set
gn(m) = (1 = |2 X1—nn) (1) and y, (x) = =55 We have 7, (1) = g,(n), Vn € R,

Vn € N. Clearly, ||y,ll;0 = 1 for all n and lim f Yp(x)dx = 0 fora > 0. Set

n—-+00

Yy := (T * ¥,)(0). Then for f € L2 (R™) we obtain

lim |[|Y,f —Tfllw=0.
n——+00

|x|2a
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Hence, forn € Nand f € Li(R+), we have

+oo| +o0 2

1Y, f12, = (T % y)O) FII2 = / / (T @) ya(—y)dy| o(x)?dx
0 —00
+00 / +00 2
< / f (T OOy (=y)dy | wx)*dx.
0 —0o0

It follows from Jensen’s inequality and Fubini’s theorem that we have

+00 +00

112 < / / (T ) Pra(=y)o ) dxdy
0

—0o0

A

+o0 400
/ ITOIRILI2 ya(n)dy < / ITI21712 v ()dy

= ITIPIfI3, VneN, Vf e L:®R").

We conclude that || Y, || < ||T||. Now consider the distribution associated to Y,,. Let K
be a compact subset of R and let zx = 1 be such that K C] — o0, zx[. By applying the

argument of the proof of Theorem 2 and Sobolev’s lemma, we have for f € Cz(R)

|(TS. (fen)(zx)

D=

A

< C(K)|IT| f |S2, (Fen) () Pdy

ly—zxl=M

BIf—

+ / 1S2 (Fen) (0)Pdy

ly—zk =M

1
2

(Sl

A

M M
CK)|IT| / I(fgn)x)Pdx | + / |(fen) (x)*dx
-M —-M

[IA

CAEK)YIflloo + £ o)
where C(K) and C(K) depend only on K. Therefore

I(TS.(fe) @] < CEKY U flloe + 1 f lls0)s ¥z 2 2k, V.f € CER)
and we conclude that urg,, defined by
(urgn, )= _lim (TS:(fn)(2),
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18 a distribution. On the other hand, we have

(Yo ) / (T (=) ) ()ya(s)ds
R

= / eTIY(T (M— £)) () yn(s)ds

R

f (Wt £ = )€ )y (s)ds

R

= <w fly—x) / yn(s>e"”ds>
R

= (urx, (Y —x)gn(x))
(urgn * (), Yy =20, Vf € CCRY).

Finally, we obtain
Yof = P (urgn  f), Vf € CC®RY), Vn e N.
Since supp urgn, C [—n, n], this completes the proof. [

Theorem 4. Letw be aweighton R, IfT € W,,, then there exists a sequence (¢n)nen C
C(R) such that

: _ _ 2 mt
lim Ty, f = Tfllo = 0./ € LE®)

and

1Ty, = | sup &@@) | IT],¥n € N.

<<l
Ot

Proof. Let T € W, be associated to a distribution pr with compact support. Let
(Bn)nen C CZ(R) be a sequence such that supp 6, C [0, %], 6, =0, lirJIrl f 6, (x)
n— ooxza

dx =0 fora > 0 and ||0,]l;1 = 1, for n € N. For f € L?U(R+) \;Ie have
lirf 16, % f — fllo =0. SetT,,f =T, * f), Vf € LZ)(]R+). We conclude that
n— 100

(Tw)nen converges to T with respect to the strong operator topology and 7,, = T, , where
¢ = ur * 6, € C(R). For f € L2(RT), we have

ITu fI2 = 1P (g %6, % O = 1P O * 1 % I,
+o0 2

- / / 60 (0)(Sy (it % Y| w(x)’dx

0 IR

+00
< / / Bu ISy (ur * £))) 2o (x) dydlx.
0 R
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By Fubini’s theorem we obtain

n

+00
I fI2 < / 60(y) f ur # Sy ) () Poo (x)2dx | dy
0

0
1 1

< / 0T (S, I dy < / O ITIP@ON2I £ 112 dy
0 0
< TIF| sup @) | IfI2.

0sy=y

We deduce that || 7,|| < ( sup @(y))||T| and Theorem 4 follows immediately from an
0<ys4
application of Theorem 3. [

4. Representation of Wiener-Hopf operators. Setw*(x) = w(—x)~!,forallx € R™.
We introduce the space

L2.(R7) = fnw%m%bonR_|/Lﬂwﬁwﬂm%hw<+m
=z

We will consider Lz)* (R™) as a subspace of Lz)* (R7) @ L2(R™) by setting f(r) = 0, for
t > 0,when f € Li* (R7). Set

[f,g]:=1[f glo= [ F)Z(—x)dx, ¥f € L2(RT), Vg € L2, (R").
]R+

We will denote by S, .+ the translation operator from L2, (R™) & L>*(R1) to L2, (R™)®
L2(R") defined by

(Sa,0 f)(x) = fx —a),
fora € R, x € R. Denoteby P~ : Li* (RT)®LARY) — LCZU* (R™) the operator defined
by P™f = xp- 1.

Lemma 2. Let o be a continuous weight on RY. Then

n
1) Fora € B, :={z€C|InR, <Imz and lim Y e M2 (k)? = 00} there

n—-+00 k=0

exists a sequence (Uy k)ken C L(ZD(R+) such that
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(4.1) i) luarllo =1, Vk € N.
(4.2) i) lim IPTS; wttak — e ugillo =0, ¥Vt € R.

n mz
2) Fora e B} :={ze€C|Imz < In R} and lim Y ezk—lz = 400} there exists
n—>+00 7 w(k)

a sequence (Vo k)keN C Li* (R7™) such that

4.3) D) | vk lox= 1, Yk e N.
(4.4) i) Him P Spor vk — e Mvakllor = 0, Vi €R.

Proof. The proof uses the same arguments as those in Section 3 in [5] (see Lemmas 4,
n .
5,6,7). Setting fe = xjo.e;and g, = > el (pthe Sp fe, we have just to repeat with minor
p=0
modifications the argument in [5] and for this reason we omit the details. [

ForT € B (LfU(R+)) denote by T* the operator in B(qu* (R™)) such that
(Tf, gl=1f T"gl,
forall f € LZ(RT), g € L2, (R7).

Lemma 3. Let w be a continuous weight on RY. Then

1) Fora € B, there exists a sequence (Uq k)keN C Lg)(]RJr) such that

luallo =1, Vk € N,
(4.5) Jim ) Ty e = $@uak o =0, ¥ € CZ(R).

2) Fora € B}, there exists a sequence (vy x)ken C LZ)* (R™) such that

“Uot,k”w* =1, VkeN,
(4.6) lim |75 vax — (@vaillor =0, Yo € CO(R).
k—+00

Proof. Letaw € B, andlet ¢ € C° ](R). Choose a sequence (Ug k)keNy C qu(RJr)

[~a,a

with the properties (4.1) and (4.2). We obtain

I Ty stk — p(@)utg i II2,

+oo| a 2

= / [ d)(Sy gk (x) — € ug 1 (x))dy| w(x)*dx
0 —a
+00 a 2

IN

< [0l | [ | wastn) = e unnin]ay | oerdx, vi e,
0 —a
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It follows from Jensen’s inequality and Fubini’s theorem that we have

I Ty tter ke — P(@)ttg il

a 400 )
< el f f Sy ok () = € (0] @(0)2dx | dy
—a 0

a
< llgli% / IPTSy ug i — e ¥ ugil? dy, Vk € N.
—a

Since fork € Nand y € [—a, a],

IP*Sy ek — € ugillo S sup (@(s)+ le ")) < +o00.
s€[—a,a]

Applying the dominated convergence theorem, we get
lim Ty uqk — p(@ugkllw = 0.
k—+00
In the same way, by using Lemma 2, we obtain the second assertion. [

Lemma 4. Let o be a continuous weight on R™ and let ¢ € C2°(R). Then we have
4.7 lp@)]| = || Ty |I. Ya € A,.

Proof. Note that from Cauchy-Schwartz’s inequality we obtain that for z € C at least

eZkIm z

n n
one of the series Y e~ 2™ 24 (k)2 and Y ST diverges and we have A, C B, |J B}
k=0 k=0

Let ¢ € CX(R). Assume that @ € A, (B, . Let (ugi)ken C LZJ(R*') be a sequence
satisfying (4.5). Since [luq k|l = 1, for all k € N, we have

@) = (p(@uar — Tp g > tak) + (Tp ik > Uar), Yk €N
and we obtain
(@) < (@ utar — Tp ttak » tai) + I Tyll, Vk €N.
We have
lim (g — Tp ok » Uap)l S lm @(@uar — Tp tiakllo =0
k— 400 k— 400
and we conclude that

(@) < 1Tyl

If « € A, () B}, by using the same argument and the property (4.6), we have

B < 1771
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Taking into account the equality || Tyl = || qu I, we obtain
@] < I1Tyll, Va € A,
and the proof is complete. [
Now we will prove our main result.

Proof of Theorem 1. Assume that w is continuous and let T € W,,. Let (¢;)neny C
CZ°(R) be a sequence such that (T, ),en converges to T with respect to the strong operator

topology and such that || 7y, || < k|| T, where k, = sup @(y) (see Theorem 4). Fix
0<y<lt

=n

a € I,. We have

(@) ()] = 16u(x +ia)] < Ty, | < Kkl T,

for all x € R. We can extract from ((@a)neN a subsequence which converges with respect
to the weak topology o (L*°(R), LL(D\R)) to a function v, € L®(R). For simplicity this sub-
sequence will be denoted also by ((¢,)a)nen - Wehave [|v, oo < hm ( sup o)T]
+o0 1
0<r< -
and

im / ((@n)a(x) = va(x)) gx) dx =0, ¥g e L'(R).
R

Notice that

Jim f (@)a @) (Pa () = va() (Fa®)) g(x) dx =0,
R

Vg € L2(R), Yf € CX(R).

We conclude that, for f € COO(R) ((¢n)a( fa)nen converges with respect to the
weak topology o of LZ(R) to va(f)a Since we have (Ty, fla = PT((dp)a * (Ha)
= ptF-! ((¢,,)a( f )a), the sequence ((Tg, f)a)nen converges with respect to the weak
topology of LZ(R) to PTF (v, ( f )a). Moreover, we have

/ |(Tg, [la(x) = (Tfa(x)]1g(x)|dx
0

S CagllTy, f = Tfllo, Vg € CZ(R),

where C; , > 0 depends only on g and a. Then, we obtain that ((Tg, f)a)nen converges
in the sense of distributions to (T f),. Thus, we conclude that (T f), = PTF~ Ly, ( a)
and (Tf)q, € L>(R™).

Below, we assume that I # (. Since (qb,,),,eN is a uniformly bounded sequence of

holomorphic functions on Aw, we can replace ((]5,,) neN by a subsequence which converges
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toafunction v € H(A,) uniformly on every compact set. Thus, foralla € I, the sequence
(an (. +1ia))nen converges to v(. + ia) in the sense of distributions. On the other hand, the
sequence ((q;;,\)a)neN converges to v, with respect to the topology o (L'(R), L*®(R)), and
we deduce that

v(x +ia) = vu(x), a.e.fora € I,.

Itisclearthat |v]ee < lim ( sup @@))||T|. Ifwissuchthat lim sup @) =1,
n——+ Ogtﬁl n—>+000§t§l

we obtain ||v||so < || 7. If we don’t assume that  is continuous we have ||v|loo < ColI T,
where C,, is the constant defined in the introduction. To obtain this we apply the equivalence
of w to a special continuous weight wg (see Section 1 ). This completes the proof. [
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