Archiv der Mathematik

Wiener-Hopf operators on $L_{w}^{2}\left(\mathbb{R}^{+}\right)$

By
Violeta Petkova

Abstract

Let $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$be a weighted space with weight ω. In this paper we show that for every Wiener-Hopf operator T on $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$and for every $a \in I_{\omega}$, there exists a function $v_{a} \in L^{\infty}(\mathbb{R})$ such that $$
(T f)_{a}=P^{+} \mathcal{F}^{-1}\left(v_{a}\left(\widehat{f)_{a}}\right)\right.
$$ for all $f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$. Here $(g)_{a}$ denotes the function $x \longrightarrow g(x) e^{a x}$ for $g \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right), P^{+} f=$ $\chi_{\mathbb{R}^{+}} f$ and $I_{\omega}=\left[\ln R_{\omega}^{-}, \ln R_{\omega}^{+}\right]$, where R_{ω}^{+}is the spectral radius of the shift $S: f(x) \longrightarrow f(x-1)$ on $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$, while $\frac{1}{R_{\omega}^{-}}$is the spectral radius of the backward shift $S^{-1}: f(x) \longrightarrow\left(P^{+} f\right)(x+1)$ on $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$. Moreover, there exists a constant C_{ω}, depending on ω, such that $\left\|v_{a}\right\|_{\infty} \leqq C_{\omega}\|T\|$ for every $a \in I_{\omega}$. If $R_{\omega}^{-}<R_{\omega}^{+}$, we prove that there exists a bounded holomorphic function v on $\stackrel{\circ}{A}_{\omega}:=\left\{z \in \mathbb{C} \mid \operatorname{Im} z \in \stackrel{\circ}{I}_{\omega}\right\}$ such that for $a \in \stackrel{\circ}{I}_{\omega}$, the function v_{a} is the restriction of v on the line $\{z \in \mathbb{C} \mid \operatorname{Im} z=a\}$.

1. Introduction. Let ω be a weight on $\mathbb{R}^{+}:=[0,+\infty[$, i.e. a positive measurable function on \mathbb{R}^{+}satisfying

$$
\begin{equation*}
0<\text { ess } \inf _{x \geqq 0} \frac{\omega(x+y)}{\omega(x)} \leqq \operatorname{ess} \sup _{x \geqq 0} \frac{\omega(x+y)}{\omega(x)}<+\infty, \forall y \in \mathbb{R}^{+} \tag{1.1}
\end{equation*}
$$

The purpose of this paper is to study the representation of Wiener-Hopf operators on the space $L_{\omega}^{2}\left(\mathbb{R}^{+}\right):=\left\{f\right.$ measurable on $\left.\left.\mathbb{R}^{+}\left|\int_{0}^{+\infty}\right| f(x)\right|^{2} \omega(x)^{2} d x<+\infty\right\}$. We will consider $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$as a subspace of $L^{2}\left(\mathbb{R}^{-}\right) \oplus L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$by setting $f(t)=0$, for $t<0$, when $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$. The space $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$is a Hilbert space with respect to the sesquilinear form

$$
\langle f, g\rangle:=\langle f, g\rangle_{\omega}=\int_{\mathbb{R}^{+}} f(x) \bar{g}(x) \omega(x)^{2} d x, \forall f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right), \forall g \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)
$$

Mathematics Subject Classification (2000): Primary 47B37; Secondary 47B35.

This work was partially supported by the european network "Analysis and Operators" contract HPRN.CT-2000-00116, funded by the European Commission.

We will denote by $S_{a, \omega}$ the translation operator from $L^{2}\left(\mathbb{R}^{-}\right) \oplus L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$to $L^{2}\left(\mathbb{R}^{-}\right) \oplus$ $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$defined by

$$
\left(S_{a, \omega} f\right)(x)=f(x-a),
$$

for $a \in \mathbb{R}, x \in \mathbb{R}$. Set

$$
\begin{aligned}
& \tilde{\omega}(x)=\operatorname{ess} \sup _{y \geqq 0} \frac{\omega(x+y)}{\omega(y)}, \text { for } x \geqq 0, \\
& \tilde{\omega}(x)=\operatorname{ess} \sup _{y \geqq 0} \frac{\omega(y)}{\omega(y-x)}, \text { for } x<0,
\end{aligned}
$$

and denote by P^{+}the operator from $L^{2}\left(\mathbb{R}^{-}\right) \oplus L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$to $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$defined by $P^{+} f=$ $\chi_{\mathbb{R}^{+}} f$. We have

$$
\left\|S_{a, \omega} P^{+}\right\|=\tilde{\omega}(a), \forall a \geqq 0
$$

and

$$
\left\|P^{+} S_{a, \omega} P^{+}\right\|=\tilde{\omega}(a), \forall a<0
$$

When there is no risk of confusion, we will write S_{a} instead of $S_{a, \omega}$. Denote by $B(X)$ the set of bounded operators on the space X.

Definition 1. An operator $T \in B\left(L_{\omega}^{2}\left(\mathbb{R}^{+}\right)\right)$is called a Wiener-Hopf operator if

$$
P^{+} S_{-a} T S_{a} f=T f, \text { for all } a \in \mathbb{R}^{+}, f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)
$$

Denote by W_{ω} the space of Wiener-Hopf operators on $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$and denote by $C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$ the space of functions in $C^{\infty}(\mathbb{R})$ with compact support in \mathbb{R}^{+}. The case $\omega=1$ is well known (see [3]). Indeed, for every $T \in W_{1}$, there exists a distribution μ_{T} such that

$$
\begin{equation*}
T f=P^{+}\left(\mu_{T} * f\right), \text { for } f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right) \tag{1.2}
\end{equation*}
$$

Moreover, there exists a function $h \in L^{\infty}(\mathbb{R})$, called the symbol of T, such that

$$
\begin{equation*}
T f=P^{+} \mathcal{F}^{-1}(h \hat{f}), \text { for } f \in L^{2}\left(\mathbb{R}^{+}\right) \tag{1.3}
\end{equation*}
$$

This paper is devoted to a generalisation of the results (1.2) and (1.3) for $T \in W_{\omega}$, where ω is a function satisfying only (1.1). We are motivated by a recent result of Jean Esterle, who proved in [2] that a Toeplitz operator on $l_{\sigma}^{2}\left(\mathbb{Z}^{+}\right):=\left\{\left.\left(u_{n}\right)_{n \geqq 0}\left|\sum_{n \geqq 0}\right| u_{n}\right|^{2} \sigma(n)^{2}<+\infty\right\}$ is associated to a bounded function on the set $U:=\left\{z \in \mathbb{C}\left|\frac{1}{\rho(T)} \leqq|z| \leqq \rho(S)\right\}\right.$, where S and T denote respectively the shift and the backward shift on $l_{\sigma}^{2}\left(\mathbb{Z}^{+}\right)$and $\rho(A)$ denotes the spectral radius of the operator A. Moreover, this function is holomorphic on $\stackrel{\circ}{U}$, if $\stackrel{\circ}{U} \neq \emptyset$. On the other hand, in a recent paper (see [5]), the author showed that every
multiplier (bounded operator commuting with translations) on a weighted space $L_{\delta}^{2}(\mathbb{R}):=$ $\left\{f\right.$ measurable on $\left.\left.\mathbb{R}\left|\int_{-\infty}^{+\infty}\right| f(x)\right|^{2} \delta(x)^{2} d x<+\infty\right\}$ has the representation $\widehat{T f}=h \hat{f}$, for $f \in C_{c}^{\infty}(\mathbb{R})$, on a band $\Omega_{\delta} \subset \mathbb{C}$ determined by δ. Here h is a L^{∞} function on the boundary of Ω_{δ}, h is bounded and holomorphic on $\stackrel{\circ}{\Omega}_{\delta}$, if $\stackrel{\circ}{\Omega}_{\delta} \neq \emptyset$, and the weight δ satisfies a condition similar to (1.1). To our best knowledge there are no general results concerning the representation of Wiener-Hopf operators on $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$. Taking into account the similarities between Wiener-Hopf operators and multipliers and the results of [5] and [2], it is natural to conjecture that Wiener-Hopf operators have representation analogous to (1.3). Nevertheless, there are some important differences and it is not yet known if every Wiener-Hopf operator on a general weighted space $L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$can be extended as a multiplier on some weighted space $L_{\delta}^{2}(\mathbb{R})$. Every Wiener-Hopf operator on $L^{2}\left(\mathbb{R}^{+}\right)$is given by $P^{+} M$, where M is a multiplier on $L^{2}(\mathbb{R})$ (see [3]) and then (1.2) and (1.3) follow obviously from the results in [4]. In the general case, the argument of [3] is inapplicable and it seems difficult to show that every Wiener-Hopf operator is induced by a multiplier. Despite of this open question, inspired by methods developed in [5], we obtain the result below. Set

$$
\begin{aligned}
& R_{\omega}^{+}=\lim _{n \rightarrow+\infty} \tilde{\omega}(n)^{\frac{1}{n}}, R_{\omega}^{-}=\lim _{n \rightarrow+\infty} \tilde{\omega}(-n)^{-\frac{1}{n}}, \\
& I_{\omega}:=\left[\ln R_{\omega}^{-}, \ln R_{\omega}^{+}\right], A_{\omega}:=\left\{z \in \mathbb{C} \mid \operatorname{Im} z \in I_{\omega}\right\}, \\
& C_{\omega}=\exp \int_{1}^{2} 2 \ln \tilde{\omega}(u) d u .
\end{aligned}
$$

Theorem 1. Let ω be a weight on \mathbb{R}^{+}and let $T \in W_{\omega}$. Then

1) For all $a \in I_{\omega}$ we have $(T f)_{a} \in L^{2}\left(\mathbb{R}^{+}\right)$, for $f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$.
2) For all $a \in I_{\omega}$ there exists a function $v_{a} \in L^{\infty}(\mathbb{R})$ such that

$$
(T f)_{a}=P^{+} \mathcal{F}^{-1}\left(v_{a}\left(\widehat{(f)_{a}}\right), \text { for } f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)\right.
$$

3) Moreover, if $\stackrel{\circ}{I}_{\omega} \neq \emptyset\left(R_{\omega}^{-}<R_{\omega}^{+}\right)$, there exists a function $v \in \mathcal{H}^{\infty}\left(\stackrel{\circ}{A}_{\omega}\right)$ such that for all $a \in \stackrel{\circ}{I}_{\omega}$

$$
\nu(x+i a)=v_{a}(x), \text { almost everywhere on } \mathbb{R}^{+}
$$

and we have $\|\nu\|_{\infty} \leqq C_{\omega}\|T\|$.
Notice that following the argument of [1], we can show as in [5], that the weight ω is equivalent to a continuous weight ω_{0} defined by

$$
\omega_{0}(x)=\exp \left(\int_{1}^{2} \ln (\omega(x+t)) d t\right)
$$

Moreover, ω_{0} is such that $\ln \omega_{0}$ is a Liptchitz function. This implies

$$
\lim _{n \rightarrow+\infty} \sup _{0 \leqq t \leqq \frac{1}{n}} \tilde{\omega_{0}}(t)=1
$$

and for every compact set $K \subset \mathbb{R}$, we have

$$
\sup _{t \in K} \tilde{\omega}(t)<+\infty .
$$

Hence, if $K \subset \mathbb{R}^{+}$, then

$$
0<\inf _{x \in K} \omega(x) \leqq \sup _{x \in K} \omega(x)<+\infty
$$

It is clear that $A_{\omega}=A_{\omega_{0}}$. In the same way, as in [5], we observe that if $T \in B\left(L_{\omega}^{2}\left(\mathbb{R}^{+}\right)\right)$ we have

$$
\|T\|=\sup _{\substack{f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right) \\ f \neq 0}} \frac{\|T f\|_{\omega_{0}}}{\|f\|_{\omega_{0}}} \leqq C_{\omega} \sup _{\substack{f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right) \\ f \neq 0}} \frac{\|T f\|_{\omega}}{\|f\|_{\omega}}
$$

Thus it is sufficient to prove Theorem 1 for a weight having the properties of ω_{0} and we obtain the result for ω with a modification of the estimation of the norm of the symbol. First, we generalise (1.2) in Section 2, by using an appropriate definition of μ_{T} and the methods of [4]. In Section 3 we approximate a Wiener-Hopf operator expointing the arguments of [5]. In Section 4, we prove Theorem 1.
2. Distribution associated to a Wiener-Hopf operator. In this section we prove that every Wiener-Hopf operator is associated to a distribution. Denote by $C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$the space of functions of $C^{\infty}(\mathbb{R})$ with support in $] 0,+\infty\left[\right.$. Set $H^{1}(\mathbb{R})=\left\{f \in L^{2}(\mathbb{R}) \mid f^{\prime} \in L^{2}(\mathbb{R})\right\}$, the derivative of $f \in L^{2}(\mathbb{R})$ being taken in the sense of distributions.

Lemma 1. If $T \in W_{\omega}$ and $f \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$, then $(T f)^{\prime}=T\left(f^{\prime}\right)$.
Proof. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$and let $\left(h_{n}\right)_{n \geqq 0} \subset \mathbb{R}^{+}$be a sequence converging to 0 . We have

$$
\left|\frac{\left(S_{-h_{n}} f\right)(x)-f(x)}{h_{n}}-f^{\prime}(x)\right| \leqq 2\left\|f^{\prime}\right\|_{\infty}, \forall x \in \mathbb{R}^{+}
$$

and by using the dominated convergence theorem, we obtain

$$
\lim _{n \rightarrow+\infty}\left\|\frac{P^{+} S_{-h_{n}} f-f}{h_{n}}-f^{\prime}\right\|_{\omega}=0 .
$$

Next we get

$$
\lim _{n \rightarrow+\infty}\left\|\frac{T P^{+} S_{-h_{n}} f-T f}{h_{n}}-T\left(f^{\prime}\right)\right\|_{\omega}=0 .
$$

Since $T \in W_{\omega}$, this implies for $n \gg 1$

$$
T P^{+} S_{-h_{n}} f=T S_{-h_{n}} f=P^{+} S_{-h_{n}} T S_{h_{n}} S_{-h_{n}} f=P^{+} S_{-h_{n}} T f
$$

Then we have

$$
\lim _{n \rightarrow+\infty} \int_{0}^{+\infty}\left|\frac{(T f)\left(x+h_{n}\right)-(T f)(x)}{h_{n}}-T\left(f^{\prime}\right)(x)\right|^{2} \omega(x)^{2} d x=0
$$

It follows that $\frac{P^{+} S_{-h_{n}} T f-T f}{h_{n}}$ converges to $T\left(f^{\prime}\right)$ in the sense of distributions and $T\left(f^{\prime}\right)=(T f)^{\prime}$.

Denote by $C_{K}^{\infty}(\mathbb{R})$ the space of functions of $C_{c}^{\infty}(\mathbb{R})$ with support in the compact K.
Theorem 2. If T is a Wiener-Hopf operator, then there exists a distribution μ_{T} such that

$$
T f=P^{+}\left(\mu_{T} * f\right)
$$

for $f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$.
Proof. Set $\tilde{f}(x)=f(-x)$, for $f \in C_{c}^{\infty}(\mathbb{R}), x \in \mathbb{R}$. Let $f \in C_{c}^{\infty}(\mathbb{R})$ and let z_{f} be such that supp $\tilde{f} \subset]-z_{f},+\infty\left[\right.$ and $S_{z} \tilde{f} \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$for $z \geqq z_{f}$. We have $\left(T S_{z} \tilde{f}\right)^{\prime}=T\left(S_{z} \tilde{f}\right)^{\prime}$ and $\left(T S_{z} \tilde{f}\right)^{\prime} \in L_{\text {loc }}^{2}(\mathbb{R})$. It follows that $T S_{z} \tilde{f}$ coincides with a continuous function on \mathbb{R}^{+} (see [6, p. 186]). Moreover, for $a>0$ and $z \geqq z_{f}$ we have

$$
\left(T S_{z+a} \tilde{f}\right)(z+a)=\left(P^{+} S_{-a} T S_{a}\left(S_{z} \tilde{f}\right)\right)(z)=\left(T S_{z} \tilde{f}\right)(z)
$$

Thus we conclude that $\left\{\left(T S_{z} \tilde{f}\right)(z)\right\}_{z \in \mathbb{R}^{+}}$is a constant for $z \geqq z_{f}$ and we set

$$
\left\langle\mu_{T}, f\right\rangle=\lim _{z \rightarrow+\infty}\left(T S_{z} \tilde{f}\right)(z)
$$

Let K be a compact subset of \mathbb{R} and let z_{K} be such that $z_{K} \geqq 1$ and $\left.K \subset\right]-\infty, z_{K}[$. Choose $g \in C_{c}^{\infty}(\mathbb{R})$ such that g is positive, supp $g \subset\left[z_{K}-1, z_{K}+1\right]$ and $g\left(z_{K}\right)=1$. For $f \in C_{K}^{\infty}(\mathbb{R})$, we have $g T\left(S_{z_{K}} \tilde{f}\right) \in H^{1}(\mathbb{R})$ and it follows from Sobolev's lemma (see [6]) that

$$
\begin{aligned}
& \left|\left(T S_{z_{K}} \tilde{f}\right)\left(z_{K}\right)\right|=\left|g\left(z_{K}\right)\left(T S_{z_{K}} \tilde{f}\right)\left(z_{K}\right)\right| \\
& \quad \leqq C\left(\left(\int_{\left|y-z_{K}\right| \leqq 1} g(y)^{2}\left|\left(T S_{z_{K}} \tilde{f}\right)(y)\right|^{2} d y\right)^{\frac{1}{2}}\right. \\
& \left.\quad+\left(\int_{\left|y-z_{K}\right| \leqq 1}\left|\left(g\left(T S_{z_{K}} \tilde{f}\right)\right)^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

where $C>0$ is a constant. It implies that there exists a constant $C(K)$, depending only on K, such that

$$
\begin{aligned}
\left|\left(T S_{z_{K}} \tilde{f}\right)\left(z_{K}\right)\right| \leqq & C(K)\left(\left(\int_{\left|y-z_{K}\right| \leqq 1}\left|\left(T S_{z_{K}} \tilde{f}\right)(y)\right|^{2} \frac{\omega(y)^{2}}{\omega(y)^{2}} d y\right)^{\frac{1}{2}}\right. \\
& \left.+\left(\int_{\left|y-z_{K}\right| \leqq 1}\left|\left(T\left(S_{z_{K}} \tilde{f}\right)^{\prime}\right)(y)\right|^{2} \frac{\omega(y)^{2}}{\omega(y)^{2}} d y\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

Since $\sup _{t \in\left[z_{K}-1, z_{K}+1\right]} \frac{1}{\omega(t)}<+\infty$ and $\sup _{t \in\left[z_{K}-1, z_{K}+1\right]} \omega(t)<+\infty$, it follows that for $f \in$ $C_{K}^{\infty}(\mathbb{R})$ we have

$$
\begin{aligned}
& \left|\left(T S_{z_{K}} \tilde{f}\right)\left(z_{K}\right)\right| \\
& \quad \leqq \mathcal{C}(K)\|T\|\left(\left(\int_{\left|y-z_{K}\right| \leqq M}\left|\left(S_{z_{K}} \tilde{f}\right)(y)\right|^{2} d y\right)^{\frac{1}{2}}\right. \\
& \left.\quad+\left(\int_{\left|y-z_{K}\right| \leqq M}\left|\left(S_{z_{K}} \tilde{f}\right)^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}}\right) \\
& \quad \leqq \mathcal{C}(K)\|T\|\left(\left(\int_{-M}^{M}|\tilde{f}(x)|^{2} d x\right)^{\frac{1}{2}}+\left(\int_{-M}^{M}\left|(\tilde{f})^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}\right) \\
& \quad \leqq \mathcal{C}(K)\|T\|\left(\|\tilde{f}\|_{\infty}+\left\|\tilde{f}^{\prime}\right\|_{\infty}\right)=\mathcal{C}(K)\|T\|\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}\right)
\end{aligned}
$$

where $\mathcal{C}(K)$ is a constant depending only on K. Since for all $z \geqq z_{K}$ and for $f \in C_{K}^{\infty}(\mathbb{R})$ we have

$$
\left(T S_{z} \tilde{f}\right)(z)=\left(T S_{z_{K}} \tilde{f}\right)\left(z_{K}\right)
$$

we deduce that μ_{T} is a distribution. On the other hand, for $y \geqq 0$ and $f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$we have for $z>y$:

$$
\begin{aligned}
(T f)(y) & =\left(S_{-y} T f\right)(0)=\left(S_{-y} S_{-z} T S_{z} f\right)(0) \\
& =\left(S_{-z}\left(S_{-y} T S_{y}\right) S_{-y} S_{z} f\right)(0)=\left(S_{-z} T S_{-y} S_{z} f\right)(0) \\
& =\left(T S_{z} S_{-y} f\right)(z) .
\end{aligned}
$$

Consequently,

$$
\lim _{z \rightarrow+\infty}\left(T S_{z} S_{-y} f\right)(z)=(T f)(y)
$$

Next, we have, for $y \geqq 0$ and for $f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$,

$$
\begin{aligned}
\lim _{z \rightarrow+\infty}\left(T S_{z} S_{-y} f\right)(z) & =\left\langle\mu_{T}, \widetilde{S_{-y} f}\right\rangle=\left\langle\mu_{T, x}, f(y-x)\right\rangle \\
& =\left(\mu_{T} * f\right)(y)
\end{aligned}
$$

and we conclude that

$$
(T f)(y)=\left(\mu_{T} * f\right)(y), y \geqq 0, f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)
$$

3. Approximation of Wiener-Hopf operators. In this section we will apply the arguments of Section 3 in [5] with some modifications. For the convenience of the reader we detail the proofs.

Denote by T_{μ} the Wiener-Hopf operator defined by the convolution with μ for $f \in$ $C_{c}^{\infty}\left(\mathbb{R}^{+}\right)$. If μ has compact support, then T_{μ} will be called a Wiener-Hopf operator with compact support.

Theorem 3. Let ω be a weight on \mathbb{R}^{+}and let $T \in W_{\omega}$. Then there exists a sequence $\left(Y_{n}\right)_{n \in \mathbb{N}}$ of Wiener-Hopf operators with compact support such that

$$
\lim _{n \rightarrow+\infty}\left\|Y_{n} f-T f\right\|_{\omega}=0, \text { for } f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)
$$

and

$$
\left\|Y_{n}\right\| \leqq\|T\|, \forall n \in \mathbb{N}
$$

Proof. Set $\left(M_{t} f\right)(x)=f(x) e^{-i t x}$, for $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right), t \in \mathbb{R}$ and $x \in \mathbb{R}^{+}$. By using the dominated convergence theorem, we obtain that the group $\left(M_{t}\right)_{t \in \mathbb{R}}$ is continuous with respect to the strong operator topology. Let $T \in W_{\omega}$ and set $\mathcal{T}(t)=M_{-t} \circ T \circ M_{t}, \forall t \in \mathbb{R}$. For $a>0, x>0$ and $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$we have

$$
\begin{aligned}
\left(S_{-a} \mathcal{T}(t) S_{a} f\right)(x) & =\left(\mathcal{T}(t) S_{a} f\right)(x+a) \\
& =e^{i t(x+a)}\left(T\left(f(s-a) e^{-i t s}\right)\right)(x+a) \\
& =e^{i t x}\left(S_{-a} T\left(f(s-a) e^{-i t(s-a)}\right)\right)(x) \\
& =e^{i t x}\left(S_{-a} T S_{a}\left(M_{t} f\right)\right)(x)=(\mathcal{T}(t) f)(x)
\end{aligned}
$$

This shows that $\mathcal{T}(t) \in W_{\omega}$. Moreover, we have $\|\mathcal{T}(t)\|=\|T\|$, for $t \in \mathbb{R}$ and $\mathcal{T}(0)=T$. The transformation \mathcal{T} is continuous from \mathbb{R} into W_{ω}. For $n \in \mathbb{N}, \eta \in \mathbb{R}, x \in \mathbb{R}$, set $g_{n}(\eta):=\left(1-\left|\frac{\eta}{n}\right|\right) \chi_{[-n, n]}(\eta)$ and $\gamma_{n}(x)=\frac{1-\cos (n x)}{\pi x^{2} n}$. We have $\widehat{\gamma_{n}}(\eta)=g_{n}(\eta), \forall \eta \in \mathbb{R}$, $\forall n \in \mathbb{N}$. Clearly, $\left\|\gamma_{n}\right\|_{L^{1}}=1$ for all n and $\lim _{n \rightarrow+\infty} \int_{|x| \geqq a} \gamma_{n}(x) d x=0$ for $a>0$. Set $Y_{n}:=\left(\mathcal{T} * \gamma_{n}\right)(0)$. Then for $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$we obtain

$$
\lim _{n \rightarrow+\infty}\left\|Y_{n} f-T f\right\|_{\omega}=0
$$

Hence, for $n \in \mathbb{N}$ and $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$, we have

$$
\begin{aligned}
\left\|Y_{n} f\right\|_{\omega}^{2} & =\left\|\left(\mathcal{T} * \gamma_{n}\right)(0) f\right\|_{\omega}^{2}=\int_{0}^{+\infty}\left|\int_{-\infty}^{+\infty}(\mathcal{T}(y) f)(x) \gamma_{n}(-y) d y\right|^{2} \omega(x)^{2} d x \\
& \leqq \int_{0}^{+\infty}\left(\int_{-\infty}^{+\infty}|(\mathcal{T}(y) f)(x)| \gamma_{n}(-y) d y\right)^{2} \omega(x)^{2} d x
\end{aligned}
$$

It follows from Jensen's inequality and Fubini's theorem that we have

$$
\begin{aligned}
\left\|Y_{n} f\right\|_{\omega}^{2} & \leqq \int_{-\infty}^{+\infty} \int_{0}^{+\infty}|(\mathcal{T}(y) f)(x)|^{2} \gamma_{n}(-y) \omega(x)^{2} d x d y \\
& \leqq \int_{-\infty}^{+\infty}\|\mathcal{T}(y)\|^{2}\|f\|_{\omega}^{2} \gamma_{n}(y) d y \leqq \int_{-\infty}^{+\infty}\|T\|^{2}\|f\|_{\omega}^{2} \gamma_{n}(y) d y \\
& =\|T\|^{2}\|f\|_{\omega}^{2}, \quad \forall n \in \mathbb{N}, \quad \forall f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)
\end{aligned}
$$

We conclude that $\left\|Y_{n}\right\| \leqq\|T\|$. Now consider the distribution associated to Y_{n}. Let K be a compact subset of \mathbb{R} and let $z_{K} \geqq 1$ be such that $\left.K \subset\right]-\infty, z_{K}[$. By applying the argument of the proof of Theorem 2 and Sobolev's lemma, we have for $f \in C_{K}^{\infty}(\mathbb{R})$

$$
\begin{aligned}
& \left|\left(T S_{z_{K}}\left(\tilde{f} g_{n}\right)\right)\left(z_{K}\right)\right| \\
& \quad \leqq C(K)\|T\|\left(\left(\int_{\left|y-z_{K}\right| \leqq M}\left|S_{z_{K}}\left(\tilde{f} g_{n}\right)(y)\right|^{2} d y\right)^{\frac{1}{2}}\right. \\
& \left.\quad+\left(\int_{\left|y-z_{K}\right| \leqq M}\left|S_{z_{K}}\left(\tilde{f} g_{n}\right)^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}}\right) \\
& \quad \leqq C(K)\|T\|\left(\left(\int_{-M}^{M}\left|\left(\tilde{f} g_{n}\right)(x)\right|^{2} d x\right)^{\frac{1}{2}}+\left(\int_{-M}^{M}\left|\left(\tilde{f} g_{n}\right)^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}\right) \\
& \quad \leqq \tilde{C}(K)\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}\right),
\end{aligned}
$$

where $C(K)$ and $\tilde{C}(K)$ depend only on K. Therefore

$$
\left|\left(T S_{z}\left(\tilde{f} g_{n}\right)\right)(z)\right| \leqq \tilde{C}(K)\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}\right), \forall z \geqq z_{K}, \forall f \in C_{K}^{\infty}(\mathbb{R})
$$

and we conclude that $\mu_{T} g_{n}$, defined by

$$
\left\langle\mu_{T} g_{n}, f\right\rangle=\lim _{z \rightarrow+\infty}\left(T S_{z}\left(\tilde{f} g_{n}\right)\right)(z)
$$

is a distribution. On the other hand, we have

$$
\begin{aligned}
\left(Y_{n} f\right)(y) & =\int_{\mathbb{R}}(\mathcal{T}(-s) f)(y) \gamma_{n}(s) d s \\
& =\int_{\mathbb{R}} e^{-i s y}\left(T\left(M_{-s} f\right)\right)(y) \gamma_{n}(s) d s \\
& =\int_{\mathbb{R}}\left\langle\mu_{T, x}, f(y-x) e^{-i s x}\right\rangle \gamma_{n}(s) d s \\
& =\left\langle\mu_{T, x}, f(y-x) \int_{\mathbb{R}} \gamma_{n}(s) e^{-i s x} d s\right\rangle \\
& =\left\langle\mu_{T, x}, f(y-x) g_{n}(x)\right\rangle \\
& =\left(\mu_{T} g_{n} * f\right)(y), \forall y \geqq 0, \forall f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right)
\end{aligned}
$$

Finally, we obtain

$$
Y_{n} f=P^{+}\left(\mu_{T} g_{n} * f\right), \forall f \in C_{c}^{\infty}\left(\mathbb{R}^{+}\right), \forall n \in \mathbb{N}
$$

Since supp $\mu_{T} g_{n} \subset[-n, n]$, this completes the proof.
Theorem 4. Let ω be a weight on \mathbb{R}^{+}. If $T \in W_{\omega}$, then there exists a sequence $\left(\phi_{n}\right)_{n \in \mathbb{N}} \subset$ $C_{c}^{\infty}(\mathbb{R})$ such that

$$
\lim _{n \rightarrow+\infty}\left\|T_{\phi_{n}} f-T f\right\|_{\omega}=0, \forall f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)
$$

and

$$
\left\|T_{\phi_{n}}\right\| \leqq\left(\sup _{0 \leqq t \leqq \frac{1}{n}} \tilde{\omega}(t)\right)\|T\|, \forall n \in \mathbb{N}
$$

Proof. Let $T \in W_{\omega}$ be associated to a distribution μ_{T} with compact support. Let $\left(\theta_{n}\right)_{n \in \mathbb{N}} \subset C_{c}^{\infty}(\mathbb{R})$ be a sequence such that supp $\theta_{n} \subset\left[0, \frac{1}{n}\right], \theta_{n} \geqq 0, \lim _{n \rightarrow+\infty} \int_{x \geqq a} \theta_{n}(x)$ $d x=0$ for $a>0$ and $\left\|\theta_{n}\right\|_{L^{1}}=1$, for $n \in \mathbb{N}$. For $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$we have $\lim _{n \rightarrow+\infty}\left\|\theta_{n} * f-f\right\|_{\omega}=0$. Set $T_{n} f=T\left(\theta_{n} * f\right), \forall f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$. We conclude that $\left(T_{n}\right)_{n \in \mathbb{N}}$ converges to T with respect to the strong operator topology and $T_{n}=T_{\phi_{n}}$, where $\phi_{n}=\mu_{T} * \theta_{n} \in C_{c}^{\infty}(\mathbb{R})$. For $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$, we have

$$
\begin{aligned}
& \left\|T_{n} f\right\|_{\omega}^{2}=\left\|P^{+}\left(\mu_{T} * \theta_{n} * f\right)\right\|_{\omega}^{2}=\left\|P^{+}\left(\theta_{n} * \mu_{T} * f\right)\right\|_{\omega}^{2} \\
& \quad=\int_{0}^{+\infty}\left|\int_{\mathbb{R}} \theta_{n}(y)\left(S_{y}\left(\mu_{T} * f\right)\right)(x) d y\right|^{2} \omega(x)^{2} d x \\
& \quad \leqq \int_{0}^{+\infty} \int_{\mathbb{R}} \theta_{n}(y)\left|\left(S_{y}\left(\mu_{T} * f\right)\right)(x)\right|^{2} \omega(x)^{2} d y d x .
\end{aligned}
$$

By Fubini's theorem we obtain

$$
\begin{aligned}
\left\|T_{n} f\right\|_{\omega}^{2} & \leqq \int_{0}^{\frac{1}{n}} \theta_{n}(y)\left(\int_{0}^{+\infty}\left|\left(\mu_{T} * S_{y} f\right)(x)\right|^{2} \omega(x)^{2} d x\right) d y \\
& \leqq \int_{0}^{\frac{1}{n}} \theta_{n}(y)\left\|T\left(S_{y} f\right)\right\|_{\omega}^{2} d y \leqq \int_{0}^{\frac{1}{n}} \theta_{n}(y)\|T\|^{2} \tilde{\omega}(y)^{2}\|f\|_{\omega}^{2} d y \\
& \leqq\|T\|^{2}\left(\sup _{0 \leqq y \leqq \frac{1}{n}} \tilde{\omega}(y)^{2}\right)\|f\|_{\omega}^{2} .
\end{aligned}
$$

We deduce that $\left\|T_{n}\right\| \leqq(\sup \tilde{\omega}(y))\|T\|$ and Theorem 4 follows immediately from an $0 \leqq y \leqq \frac{1}{n}$
application of Theorem 3.
4. Representation of Wiener-Hopf operators. Set $\omega^{*}(x)=\omega(-x)^{-1}$, for all $x \in \mathbb{R}^{-}$. We introduce the space

$$
L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right):=\left\{f \text { measurable on }\left.\mathbb{R}^{-}\left|\int_{\mathbb{R}^{-}}\right| f(x)\right|^{2} \omega^{*}(x)^{2} d x<+\infty\right\}
$$

We will consider $L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$as a subspace of $L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right) \oplus L^{2}\left(\mathbb{R}^{+}\right)$by setting $f(t)=0$, for $t>0$, when $f \in L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$. Set

$$
[f, g]:=[f, g]_{\omega}=\int_{\mathbb{R}^{+}} f(x) \bar{g}(-x) d x, \forall f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right), \forall g \in L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)
$$

We will denote by $S_{a, \omega^{*}}$ the translation operator from $L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right) \oplus L^{2}\left(\mathbb{R}^{+}\right)$to $L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right) \oplus$ $L^{2}\left(\mathbb{R}^{+}\right)$defined by

$$
\left(S_{a, \omega^{*}} f\right)(x)=f(x-a),
$$

for $a \in \mathbb{R}, x \in \mathbb{R}$. Denote by $P^{-}: L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right) \oplus L^{2}\left(\mathbb{R}^{+}\right) \longrightarrow L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$the operator defined by $P^{-} f=\chi_{\mathbb{R}^{-}} f$.

Lemma 2. Let ω be a continuous weight on \mathbb{R}^{+}. Then

1) For $\alpha \in B_{\omega}^{-}:=\left\{z \in \mathbb{C} \mid \ln R_{\omega}^{-} \leqq \operatorname{Im} z\right.$ and $\left.\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} e^{-2 k \operatorname{Im} z} \omega(k)^{2}=+\infty\right\}$ there exists a sequence $\left(u_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$such that
i) $\left\|u_{\alpha, k}\right\|_{\omega}=1, \quad \forall k \in \mathbb{N}$.
ii) $\lim _{k \rightarrow+\infty}\left\|P^{+} S_{t, \omega} u_{\alpha, k}-e^{-i t \alpha} u_{\alpha, k}\right\|_{\omega}=0, \forall t \in \mathbb{R}$.
2) For $\alpha \in B_{\omega}^{+}:=\left\{z \in \mathbb{C} \mid \operatorname{Im} z \leqq \ln R_{\omega}^{+}\right.$and $\left.\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} \frac{e^{2 k \mathrm{Im} z}}{\omega(k)^{2}}=+\infty\right\}$ there exists a sequence $\left(v_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$such that
i) $\left\|v_{\alpha, k}\right\|_{\omega^{*}}=1, \quad \forall k \in \mathbb{N}$.

$$
\begin{equation*}
\text { ii) } \lim _{k \rightarrow+\infty}\left\|P^{-} S_{t, \omega^{*}} v_{\alpha, k}-e^{-i t \alpha} v_{\alpha, k}\right\|_{\omega^{*}}=0, \quad \forall t \in \mathbb{R} \text {. } \tag{4.3}
\end{equation*}
$$

Proof. The proof uses the same arguments as those in Section 3 in [5] (see Lemmas 4, $5,6,7)$. Setting $f_{\epsilon}=\chi_{[0, \epsilon]}$ and $g_{n}=\sum_{p=0}^{n} e^{i(p+1) \alpha} S_{p} f_{\epsilon}$, we have just to repeat with minor modifications the argument in [5] and for this reason we omit the details.

For $T \in B\left(L_{\omega}^{2}\left(\mathbb{R}^{+}\right)\right)$denote by T^{*} the operator in $B\left(L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)\right)$such that

$$
[T f, g]=\left[f, T^{*} g\right]
$$

for all $f \in L_{\omega}^{2}\left(\mathbb{R}^{+}\right), g \in L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$.
Lemma 3. Let ω be a continuous weight on \mathbb{R}^{+}. Then

1) For $\alpha \in B_{\omega}^{-}$, there exists a sequence $\left(u_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$such that

$$
\begin{align*}
\left\|u_{\alpha, k}\right\|_{\omega} & =1, \forall k \in \mathbb{N} \\
\lim _{k \rightarrow+\infty}\left\|T_{\phi} u_{\alpha, k}-\hat{\phi}(\alpha) u_{\alpha, k}\right\|_{\omega} & =0, \forall \phi \in C_{c}^{\infty}(\mathbb{R}) . \tag{4.5}
\end{align*}
$$

2) For $\alpha \in B_{\omega}^{+}$, there exists a sequence $\left(v_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega^{*}}^{2}\left(\mathbb{R}^{-}\right)$such that

$$
\begin{align*}
\left\|v_{\alpha, k}\right\|_{\omega^{*}} & =1, \forall k \in \mathbb{N} \\
\lim _{k \rightarrow+\infty}\left\|T_{\phi}^{*} v_{\alpha, k}-\hat{\phi}(\alpha) v_{\alpha, k}\right\|_{\omega^{*}} & =0, \quad \forall \phi \in C_{c}^{\infty}(\mathbb{R}) . \tag{4.6}
\end{align*}
$$

Proof. Let $\alpha \in B_{\omega}^{-}$and let $\phi \in C_{[-a, a]}^{\infty}(\mathbb{R})$. Choose a sequence $\left(u_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$ with the properties (4.1) and (4.2). We obtain

$$
\begin{aligned}
& \left\|T_{\phi} u_{\alpha, k}-\hat{\phi}(\alpha) u_{\alpha, k}\right\|_{\omega}^{2} \\
& \quad=\int_{0}^{+\infty}\left|\int_{-a}^{a} \phi(y)\left(S_{y} u_{\alpha, k}(x)-e^{-i y \alpha} u_{\alpha, k}(x)\right) d y\right|^{2} \omega(x)^{2} d x \\
& \quad \leqq \int_{0}^{+\infty}\|\phi\|_{\infty}^{2}\left(\int_{-a}^{a}\left|S_{y} u_{\alpha, k}(x)-e^{-i y \alpha} u_{\alpha, k}(x)\right| d y\right)^{2} \omega(x)^{2} d x, \quad \forall k \in \mathbb{N} .
\end{aligned}
$$

It follows from Jensen's inequality and Fubini's theorem that we have

$$
\begin{aligned}
& \left\|T_{\phi} u_{\alpha, k}-\hat{\phi}(\alpha) u_{\alpha, k}\right\|_{\omega}^{2} \\
& \quad \leqq\|\phi\|_{\infty}^{2} \int_{-a}^{a}\left(\int_{0}^{+\infty}\left|S_{y} u_{\alpha, k}(x)-e^{-i y \alpha} u_{\alpha, k}(x)\right|^{2} \omega(x)^{2} d x\right) d y \\
& \quad \leqq\|\phi\|_{\infty}^{2} \int_{-a}^{a}\left\|P^{+} S_{y} u_{\alpha, k}-e^{-i y \alpha} u_{\alpha, k}\right\|_{\omega}^{2} d y, \quad \forall k \in \mathbb{N}
\end{aligned}
$$

Since for $k \in \mathbb{N}$ and $y \in[-a, a]$,

$$
\left\|P^{+} S_{y} u_{\alpha, k}-e^{-i y \alpha} u_{\alpha, k}\right\|_{\omega} \leqq \sup _{s \in[-a, a]}\left(\tilde{\omega}(s)+\left|e^{-i s \alpha}\right|\right)<+\infty
$$

Applying the dominated convergence theorem, we get

$$
\lim _{k \rightarrow+\infty}\left\|T_{\phi} u_{\alpha, k}-\hat{\phi}(\alpha) u_{\alpha, k}\right\|_{\omega}=0
$$

In the same way, by using Lemma 2, we obtain the second assertion.
Lemma 4. Let ω be a continuous weight on \mathbb{R}^{+}and let $\phi \in C_{c}^{\infty}(\mathbb{R})$. Then we have

$$
\begin{equation*}
|\hat{\phi}(\alpha)| \leqq\left\|T_{\phi}\right\|, \forall \alpha \in A_{\omega} \tag{4.7}
\end{equation*}
$$

Proof. Note that from Cauchy-Schwartz's inequality we obtain that for $z \in \mathbb{C}$ at least one of the series $\sum_{k=0}^{n} e^{-2 k \operatorname{Im} z} \omega(k)^{2}$ and $\sum_{k=0}^{n} \frac{e^{2 k \operatorname{Im} z}}{\omega(k)^{2}}$ diverges and we have $A_{\omega} \subset B_{\omega}^{-} \cup B_{\omega}^{+}$. Let $\phi \in C_{c}^{\infty}(\mathbb{R})$. Assume that $\alpha \in A_{\omega} \bigcap B_{\omega}^{-}$. Let $\left(u_{\alpha, k}\right)_{k \in \mathbb{N}} \subset L_{\omega}^{2}\left(\mathbb{R}^{+}\right)$be a sequence satisfying (4.5). Since $\left\|u_{\alpha, k}\right\|_{\omega}=1$, for all $k \in \mathbb{N}$, we have

$$
\hat{\phi}(\alpha)=\left\langle\hat{\phi}(\alpha) u_{\alpha, k}-T_{\phi} u_{\alpha, k}, u_{\alpha, k}\right\rangle+\left\langle T_{\phi} u_{\alpha, k}, u_{\alpha, k}\right\rangle, \quad \forall k \in \mathbb{N}
$$

and we obtain

$$
|\hat{\phi}(\alpha)| \leqq\left|\left\langle\hat{\phi}(\alpha) u_{\alpha, k}-T_{\phi} u_{\alpha, k}, u_{\alpha, k}\right\rangle\right|+\left\|T_{\phi}\right\|, \quad \forall k \in \mathbb{N} .
$$

We have

$$
\lim _{k \rightarrow+\infty}\left|\left\langle\hat{\phi}(\alpha) u_{\alpha, k}-T_{\phi} u_{\alpha, k}, u_{\alpha, k}\right\rangle\right| \leqq \lim _{k \rightarrow+\infty}\left\|\hat{\phi}(\alpha) u_{\alpha, k}-T_{\phi} u_{\alpha, k}\right\|_{\omega}=0
$$

and we conclude that

$$
|\hat{\phi}(\alpha)| \leqq\left\|T_{\phi}\right\|
$$

If $\alpha \in A_{\omega} \bigcap B_{\omega}^{+}$, by using the same argument and the property (4.6), we have

$$
|\hat{\phi}(\alpha)| \leqq\left\|T_{\phi}^{*}\right\| .
$$

Taking into account the equality $\left\|T_{\phi}\right\|=\left\|T_{\phi}^{*}\right\|$, we obtain

$$
|\hat{\phi}(\alpha)| \leqq\left\|T_{\phi}\right\|, \quad \forall \alpha \in A_{\omega}
$$

and the proof is complete.
Now we will prove our main result.
Proof of Theorem 1. Assume that ω is continuous and let $T \in W_{\omega}$. Let $\left(\phi_{n}\right)_{n \in \mathbb{N}} \subset$ $C_{c}^{\infty}(\mathbb{R})$ be a sequence such that $\left(T_{\phi_{n}}\right)_{n \in \mathbb{N}}$ converges to T with respect to the strong operator topology and such that $\left\|T_{\phi_{n}}\right\| \leqq k_{n}\|T\|$, where $k_{n}=\sup \tilde{\omega}(y)$ (see Theorem 4). Fix $a \in I_{\omega}$. We have

$$
\left|\widehat{\left(\widehat{\phi_{n}}\right)_{a}}(x)\right|=\left|\widehat{\phi_{n}}(x+i a)\right| \leqq\left\|T_{\phi_{n}}\right\| \leqq k_{n}\|T\|,
$$

for all $x \in \mathbb{R}$. We can extract from $\left(\left(\widehat{\phi_{n}}\right)_{a}\right)_{n \in \mathbb{N}}$ a subsequence which converges with respect to the weak topology $\sigma\left(L^{\infty}(\mathbb{R}), L^{1}(\mathbb{R})\right)$ to a function $v_{a} \in L^{\infty}(\mathbb{R})$. For simplicity this subsequence will be denoted also by $\left(\left(\widehat{\phi_{n}}\right)_{a}\right)_{n \in \mathbb{N}}$. We have $\left\|v_{a}\right\|_{\infty} \leqq \lim _{n \rightarrow+\infty}\left(\sup _{0 \leqq t \leqq \frac{1}{n}} \tilde{\omega}(t)\right)\|T\|$ and

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}}\left(\left({\left.\widehat{\phi_{n}}\right)_{a}}(x)-v_{a}(x)\right) g(x) d x=0, \quad \forall g \in L^{1}(\mathbb{R}) .\right.
$$

Notice that

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}}\left(\widehat{\left.\phi_{n}\right)_{a}}(x) \widehat{(f)_{a}}(x)-v_{a}(x) \widehat{(f)_{a}}(x)\right) g(x) d x=0, \\
\forall g \in L^{2}(\mathbb{R}), \forall f \in C_{c}^{\infty}(\mathbb{R}) .
\end{gathered}
$$

We conclude that, for $f \in C_{c}^{\infty}(\mathbb{R}),\left(\left(\widehat{\phi_{n}}\right)_{a}\left(\widehat{f)_{a}}\right)_{n \in \mathbb{N}}\right.$ converges with respect to the weak topology of $L^{2}(\mathbb{R})$ to $v_{a} \widehat{(f)_{a}}$. Since we have $\left(T_{\phi_{n}} f\right)_{a}=P^{+}\left(\left(\phi_{n}\right)_{a} *(f)_{a}\right)$ $=P^{+} \mathcal{F}^{-1}\left(\left(\widehat{\phi_{n}}\right)_{a}\left(\widehat{f)_{a}}\right)\right.$, the sequence $\left(\left(T_{\phi_{n}} f\right)_{a}\right)_{n \in \mathbb{N}}$ converges with respect to the weak topology of $L^{2}(\mathbb{R})$ to $P^{+} \mathcal{F}^{-1}\left(v_{a}\left(\widehat{f)_{a}}\right)\right.$. Moreover, we have

$$
\begin{aligned}
& \int_{0}^{+\infty}\left|\left(T_{\phi_{n}} f\right)_{a}(x)-(T f)_{a}(x) \| g(x)\right| d x \\
& \quad \leqq C_{a, g}\left\|T_{\phi_{n}} f-T f\right\|_{\omega}, \forall g \in C_{c}^{\infty}(\mathbb{R})
\end{aligned}
$$

where $C_{a, g}>0$ depends only on g and a. Then, we obtain that $\left(\left(T_{\phi_{n}} f\right)_{a}\right)_{n \in \mathbb{N}}$ converges in the sense of distributions to $(T f)_{a}$. Thus, we conclude that $(T f)_{a}=P^{+} \mathcal{F}^{-1}\left(v_{a} \widehat{(f)_{a}}\right)$ and $(T f)_{a} \in L^{2}\left(\mathbb{R}^{+}\right)$.
Below, we assume that $\stackrel{\circ}{I}_{\omega} \neq \emptyset$. Since $\left(\widehat{\phi_{n}}\right)_{n \in \mathbb{N}}$ is a uniformly bounded sequence of holomorphic functions on $\stackrel{\circ}{A}_{\omega}$, we can replace $\left(\widehat{\phi_{n}}\right)_{n \in \mathbb{N}}$ by a subsequence which converges
to a function $v \in \mathcal{H}\left(\AA_{\omega}\right)$ uniformly on every compact set. Thus, for all $a \in I_{\omega}$, the sequence $\left(\widehat{\phi}_{n}(.+i a)\right)_{n \in \mathbb{N}}$ converges to $v(.+i a)$ in the sense of distributions. On the other hand, the sequence $\left(\left({\bar{\phi})_{n}}_{a}\right)_{n \in \mathbb{N}}\right.$ converges to v_{a} with respect to the topology $\sigma\left(L^{1}(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$, and we deduce that

$$
v(x+i a)=v_{a}(x), \text { a.e. for } a \in \stackrel{\circ}{I}_{\omega} .
$$

It is clear that $\|\nu\|_{\infty} \leqq \lim _{n \rightarrow+\infty}\left(\sup _{0 \leqq t \leqq \frac{1}{n}} \tilde{\omega}(t)\right)\|T\|$. If ω is such that $\lim _{n \rightarrow+\infty} \sup _{0 \leqq t \leqq \frac{1}{n}} \tilde{\omega}(t)=1$, we obtain $\|v\|_{\infty} \leqq\|T\|$. If we don't assume that ω is continuous we have $\|v\|_{\infty} \leqq C_{\omega}\|T\|$, where C_{ω} is the constant defined in the introduction. To obtain this we apply the equivalence of ω to a special continuous weight ω_{0} (see Section 1). This completes the proof.

Acknowledgements. The author thanks Jean Esterle for his useful advices and encouragements.

References

[1] A. Beurling and P. Malliavin, On Fourier transforms of mesures with compact support. Acta. Math. 107, 201-309 (1962).
[2] J. Esterle, Toeplitz operators on weighted Hardy spaces. St. Petersburg Math. J. 14, 251-272 (2003).
[3] G. A. Hively, Wiener-Hopf operators induced by multipliers. Acta. Sci. Math. (Szeged) 37, 63-77 (1975).
[4] L. HÖRMANDER, Estimates for translation invariant operators in L^{p} spaces. Acta Math. 104, 93-140 (1960).
[5] V. Petkova, Symbole d'un multiplicateur sur $L_{\omega}^{2}(\mathbb{R})$. Bull. Sci. Math. 128, 391-415 (2004).
[6] G. Roos, Analyse et Géométrie. Méthodes hilbertiennes. Paris 2002.
Received: 18 May 2004
V. Petkova

Laboratoire Bordelais d’Analyse et Géométrie U.M.R. 5467
Université Bordeaux 1
351, cours de la Libération
F-33405 Talence Cedex
France
petkova@math.u-bordeaux1.fr

